Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
Vì :
\(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)
\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
Nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(\Rightarrow\)\(A>B\)
Vậy \(A>B\)
Ta có: \(B=\frac{2008+2009+2010}{2009+2010+2011}\)
\(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
Vì \(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)
\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008+2009+2010}{2009+2010+2011}\)
hay A > B
Vậy A > B
A=\(\dfrac{2009^{2010}+1}{2009^{2009}+1}\)
2009A=\(\dfrac{(2009^{2010}+1)+0}{2009^{2010}+1}\)
= 1+\(\dfrac{0}{2009^{2010}+1}\)= 1+0 =1
B=\(\dfrac{2009^{2011}-2}{2009^{2010}-2}\)
2009B=\(\dfrac{2009^{2011}-1}{2009^{2011}-2009}\)
=\(\dfrac{(2009^{2011}-1)-0}{2009^{2011}-2009}\)
= \(1-\dfrac{0}{2009^{2011}-2009}\)
=1-0= 1
Vì 1=1\(\Rightarrow A=B\)
Ta có : A = 2009^2010+1/2009^2009+1
Suy ra: 1/2009 A = 1 - 2008/2009^2010+2009 (1)
Lại có:B = 2009^2011 - 2 / 2009^2010 - 2
Suy ra : 1/2009 B = 1 + 4016/2009^2011-4018 (2)
Vì 1 - 2008/2009^2010+2009 < 1 + 4016/2009^2011-4018 (3)
Từ (1);(2) và (3) suy ra : A<B
2, ta thấy:
\(\dfrac{2008}{2009}< \dfrac{2008}{2009+2010}\left(1\right)\)
\(\dfrac{2009}{2010}< \dfrac{2009}{2009+20010}\left(2\right)\)
từ (1) và (2) cộng vế với vế ta đc :\(\dfrac{2008}{2009}+\dfrac{2009}{20010}< \dfrac{2008}{2009+2010}+\dfrac{2009}{2009+2010}=\dfrac{2008+2009}{2009+2010}\)
#)Giải :
Mình sẽ làm mấy bài khó, còn dễ bạn tự lo nha ^^
Bài 3 :
Ta có :
\(2009A=\frac{2009\left(2009^{2008}+1\right)}{2009^{2009}+2}=\frac{2009^{2009}+2009}{2009^{2009}+1}=1+\frac{2008}{2009^{2009}+1}\)
\(2009B=\frac{2009\left(2009^{2009}+1\right)}{2009^{2010}+1}=\frac{2009^{2010}+2009}{2009^{2010}+1}=1+\frac{2008}{2009^{2010}+1}\)
Vì \(1+\frac{2008}{2009^{2009}+1}>1+\frac{2008}{2009^{2010}+1}\Rightarrow2009A>2009B\Rightarrow A>B\)
Vậy A > B
1.
\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)
cứ làm như vậy ta được :
\(=1+1=2\)
2. Ta có :
\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)
vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\); \(\frac{2009}{2010}>\frac{2009}{2009+2010}\)
\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)
\(B=\dfrac{2008+2009+2010}{2009+2010+2011}=\dfrac{2008}{2009+2010+2011}+\dfrac{2009}{2009+2010+2011}+\dfrac{2010}{2009+2010+2011}\)Ta có : \(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010+2011}\)
\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010+2011}\)
\(\dfrac{2010}{2011}>\dfrac{2010}{2009+2010+2011}\)\(=>\dfrac{2008}{2009}+\dfrac{2009}{2010}+\dfrac{2010}{2011}>\dfrac{2008+2009+2010}{2009+2010+2011}\)
Hay A > B
Ta có :
+) \(A=\dfrac{1+9+9^2+...+9^{2009}}{1+9+9^2+...+9^{2009}}+\dfrac{9^{2010}}{1+9+9^2+...+9^{2009}}\)
\(A=1+1:\dfrac{1+9+9^2+...+9^{2009}}{9^{2010}}\)
\(A=1+1:\left(\dfrac{1}{9^{2010}}+\dfrac{1}{9^{2009}}+...+\dfrac{1}{9}\right)\)
+) \(B=\dfrac{1+5+5^2+...+5^{2009}}{1+5+5^2+...+5^{2009}}+\dfrac{5^{2010}}{1+5+5^2+...+5^{2009}}\)
\(B=1+1:\dfrac{1+5+5^2+...+5^{2009}}{5^{2010}}\)
\(B=1+1:\left(\dfrac{1}{5^{2010}}+\dfrac{1}{5^{2009}}+...+\dfrac{1}{5}\right)\)
Vì \(\dfrac{1}{9^{2010}}< \dfrac{1}{5^{2010}}\)
\(\dfrac{1}{9^{2009}}< \dfrac{1}{5^{2009}}\) (ngoặc cả mấy cài so sánh này vào rôi mời suy ra nhé)
.............................
\(\dfrac{1}{9}< \dfrac{1}{5}\)
\(\)=> \(\dfrac{1}{9^{2010}}+\dfrac{1}{9^{2009}}+...+\dfrac{1}{9}< \dfrac{1}{5^{2010}}+\dfrac{1}{5^{2009}}+...+\dfrac{1}{5}\)
=> \(1:\left(\dfrac{1}{9^{2010}}+\dfrac{1}{9^{2009}}+...+\dfrac{1}{9}\right)>1:\left(\dfrac{1}{5^{2010}}+\dfrac{1}{5^{2009}}+...+\dfrac{1}{5}\right)\)
=> \(1+1:\left(\dfrac{1}{9^{2010}}+\dfrac{1}{9^{2009}}+...+\dfrac{1}{9}\right)>1+1:\left(\dfrac{1}{5^{2010}}+\dfrac{1}{5^{2009}}+...+\dfrac{1}{5}\right)\)
Hay A > B
=\(\dfrac{1}{2009.\left(\dfrac{1}{2009}+\dfrac{1}{2011}+\dfrac{1}{2010}\right)}+\dfrac{1}{2010.\left(\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2011}\right)}+\dfrac{1}{2011.\left(\dfrac{1}{2011}+\dfrac{1}{2009}+\dfrac{1}{2010}\right)}\)\(=\dfrac{1}{2009}:\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)+\dfrac{1}{2010}:\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)+\dfrac{1}{2011}:\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)\)
\(=\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right):\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)=1\)
1.
ta có: 2009A= (2009^2010+ 2009)/ (2009^2010+1)= (2009^10+1+2008)/(2009^2010+1)=1+ [2008/(2009^2010+1)]
làm tương tự như trên ta được :
2009B=1-[4016/(2009^2011-2)]
lại có:
2009A= .............(nt) > 1
2009B=...........<1
=>2009A>2009B
=>A>B
câu 2 và 3 thì làm sao bạn