Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{x^4+15x+7}{x^4+15x+7}\cdot\dfrac{x}{14x^2+1}\cdot\dfrac{4x^3+4}{2x^3+2}=\dfrac{2x}{14x^2+1}\)
b: \(=\dfrac{x^7+3x^2+2}{x^7+3x^2+2}\cdot\dfrac{x^2+x+1}{x^3-1}\cdot\dfrac{3x}{x+1}\)
\(=\dfrac{1}{x-1}\cdot\dfrac{3x}{x+1}=\dfrac{3x}{x^2-1}\)
ĐK \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
Ta có \(A=\left(\frac{1}{\sqrt{x}-1}+\frac{x-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}+2}-\frac{x-\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right)\)
\(=\frac{\sqrt{x}+2+x-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}:\frac{x-1-x+\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+3}=\frac{x+3}{\sqrt{x}+3}\)
C=\(\frac{\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+2+4\sqrt{x-2}}}{\sqrt{\frac{4}{x^2}-\frac{4}{x}+1}}\)=\(\frac{\sqrt{\left(\sqrt{x-2}-2\right)^2}+\sqrt{\left(\sqrt{x-2}+2\right)^2}}{\sqrt{\left(\frac{2}{x}-1\right)^2}}\)
=\(\frac{\sqrt{x-2}-2+\sqrt{x-2}+2}{\frac{2}{x}-1}\)=\(\frac{2\sqrt{x-2}}{\frac{2}{x}-1}\)=\(\frac{-2x}{\sqrt{x-2}}\)
6\(C=\frac{\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+2+4\sqrt{x-2}}}{\sqrt{\frac{4}{x^2}-\frac{4}{x}+1}}\) Điều kiện xác định :\(\hept{\begin{cases}x>2\\x\ne6\end{cases}}\)
\(=\frac{\sqrt{x-2-4\sqrt{x-2}+4}+\sqrt{x-2+4\sqrt{x-2}+4}}{\sqrt{\left(\frac{2}{x}-1\right)^2}}\)
\(=\frac{\sqrt{\left(\sqrt{x-2}-2\right)^2}+\sqrt{\left(\sqrt{x-2}+2\right)^2}}{\left|\frac{2}{x}-1\right|}\)
\(=\frac{\left|\sqrt{x-2}-2\right|+\left|\sqrt{x-2}+2\right|}{\left|\frac{2}{x}-1\right|}\)
-Vì x>2 nên \(\frac{2}{x}< \frac{2}{2}=1\)\(\Rightarrow\frac{2}{x}-1< 0\)
\(\sqrt{x-2}\ge0\)nên\(\sqrt{x-2}+2>0\)
Do đó \(C=\frac{\left|\sqrt{x-2}-2\right|+\sqrt{x-2}+2}{1-\frac{2}{x}}\)
*Với x<6 và x>2 \(\Rightarrow x-2< 4\)\(\Rightarrow\sqrt{x-2}< \sqrt{4}=2\)
\(\Rightarrow\sqrt{x-2}-2< 0\)
Cho nên \(C=\frac{2-\sqrt{x-2}+\sqrt{x-2}+2}{1-\frac{2}{x}}\)
\(=\frac{4}{\frac{x-2}{x}}\)
\(=\frac{4x}{x-2}\)
*Với x>6 (không cho x=6 vì để C xác định)
\(\Rightarrow\sqrt{x-2}>\sqrt{4}=2\)\(\Rightarrow\sqrt{x-2}-2>0\)
Cho nên \(C=\frac{\sqrt{x-2}-2+\sqrt{x-2}+2}{1-\frac{2}{x}}\)
\(=\frac{2\sqrt{x-2}}{\frac{x-2}{x}}\)
\(=\frac{2x\sqrt{x-2}}{x-2}\)
Lưu ý là không nên để căn ở mẫu.
\(=\frac{x^2+xy+y^2}{x+y}.\left(\frac{1}{\left(x-y\right)x}-\frac{3y^2}{x\left(x^3-y^3\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right)\)
\(=\frac{x^2+xy+y^2}{x+y}.\frac{x^2+xy+y^2-3y^2-xy+y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{x^2-y^2}{x\left(x-y\right)\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)}{x\left(x-y\right)\left(x+y\right)}=\frac{1}{x}\)
\(B=\left[\frac{x^2}{x^2-1}-\frac{x^2}{x^2+1}\left(\frac{x}{x+1}+\frac{1}{x^2+x}\right)\right]:\frac{1}{x+1}\)
\(=\left(\frac{x^2}{x^2-1}-\frac{x^2}{x^2+1}.\frac{x^2+1}{x^2+x}\right)\left(x+1\right)\)
\(=\left(\frac{x^2}{x^2-1}-\frac{x^2}{x^2+x}\right)\left(x+1\right)\)
\(=\left(\frac{x^2}{x^2-1}-\frac{x}{x+1}\right)\left(x+1\right)\)
\(=\frac{x^2-x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}.\left(x+1\right)\)
\(=\frac{x}{x-1}\)
\(A=\dfrac{x}{x-2}-\dfrac{x^2+x-2}{x^2-4}=\dfrac{x^2+2x-x^2-x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x-2}\)
\(A=\dfrac{x}{x-2}+\dfrac{x^2+x-2}{4-x^2}\left(x\ne\pm2\right).\)
\(A=\dfrac{x}{x-2}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x-2}-\dfrac{x-1}{x-2}=\dfrac{x-x+1}{x-2}=\dfrac{1}{x-2.}\)