Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{28}.4^{14}.18^{35}.19^7\)
\(=3^{28}.\left(2^2\right)^{14}.\left(2.3^2\right)^{35}.19^7\)
\(=3^{28}.2^{28}.2^{35}.3^{70}.19^7\)
\(=2^{63}.3^{98}.19^7\)
P/S: mấy bài này cứ phân tích ra các thừa số nguyên tố mà làm
\(A=\left(2+2^2+2^3+2^4+2^5\right)+\)\(\left(2^6+2^7+2^8+2^9+2^{10}\right)+....\left(2^{86}+2^{87}+2^{88}+2^{89}+2^{90}\right)\)
\(A=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)\(+....+2^{86}.\left(1+2+2^2+2^3+2^4\right)\)
\(A=2.21+2^6.21+...+2^{86}.21\)
\(A=21.\left(2+2^6+...+2^{86}\right)⋮21\)
\(P=\left(1^2+2^2+...............+2015^2\right):\left(2^2+4^2+........+4030^2\right)\)
\(P=\left(1^2+2^2+............+2015^2\right):\left[\left(1.2\right)^2+\left(2.2\right)^2+.............+\left(2.2015\right)^2\right]\)
\(P=\left(1^2+2^2+........+2015^2\right):\left(1^2.2^2+2^2.2^2+...............+2015^2.2^2\right)\)
\(P=\left(1^2+2^2+......+2015^2\right):2^2.\left(1^2+2^2+.........+2015^2\right)\)
\(P=\left(1^2+2^2+........+2015^2\right).\frac{1}{2^2.\left(1^2+2^2+..............+2015^2\right)}\)
\(P=\frac{1^2+2^2+...............+2015^2}{2^2.\left(1^2+2^2+............+2015^2\right)}=\frac{1}{2^2}=\frac{1}{4}\)
Chúc bạn học tốt
\(A=1+6+6^2+...+6^{100}\)
\(6A=6+6^2+6^3+...+6^{101}\)
\(6A-A=\left(6+6^2+...+6^{101}\right)-\left(1+6+...+6^{100}\right)\)
\(5A=6^{101}-1\)
\(A=\frac{6^{101}-1}{5}\)
Hoàn toàn tương tự với các câu b) c)
\(A=1+6+6^2+6^3+...+6^{100}\)
\(6A=6+6^2+6^3+6^4+...+6^{101}\)
\(6A-A=\left(6+6^2+6^3+6^4+...+6^{101}\right)-\left(1+6+6^2+...+6^{100}\right)\)
\(5A=6^{101}-1\)
\(A=\frac{6^{101}-1}{5}\)
Bài 1:
a) \(\frac{13.23-13}{26.21+26}\)=\(\frac{13.22}{26.22}\)=\(\frac{13}{26}\)=\(\frac{1}{2}\)
b) \(\frac{16.21-16}{4.19+4}\)=\(\frac{16.20}{4.20}\)=\(\frac{16}{4}\)= 4