K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

1: \(M=\left|x-1\right|+x+2\)

Trường hợp 1: x>=1

M=x-1+x+2=2x+1

Trường hợp 2: x<1

M=1-x+x+2=3

2: \(N=x-3+\left|x-3\right|\)

Trường hợp 1: x>=3

\(N=x-3+x-3=2x-6\)

Trường hợp 2: x<3

\(N=x-3+3-x=0\)

3: \(P=2x-1-\left|x-2\right|\)

Trường hợp 1: x<2

\(P=2x-1-\left(2-x\right)=2x-1-2+x=3x-3\)

TRường hợp 2: x>=2

\(P=2x-1-x+2=x+1\)

12 tháng 3 2017

Đề sai bạn nhé. Đưa dữ kiện 3 ẩn bắt tính biểu thức chứa 2 ẩn làm sao làm được ?

Bạn kiểm tra lại nha

12 tháng 3 2017

xin lỗi z chứ ko phải là 2

28 tháng 7 2017

c, \(\left(7-3x\right)\left(2x+1\right)=0\)

=> \(7-3x=0\) hoặc \(2x+1=0\)

\(3x=7-0\) hoặc \(2x=0-1\)

\(3x=7\) hoặc \(2x=-1\)

\(x=7:3\) hoặc \(x=-1:2\)

\(x=\dfrac{7}{3}\) hoặc \(x=-0,5\)

Vậy, \(x\in\left\{\dfrac{7}{3};-0,5\right\}\)

29 tháng 10 2017

a)hình như đề sai thì phải

sửa lại

\(\left(\dfrac{1}{7}-\dfrac{2}{5}\right).\dfrac{2016}{2017}+\left(\dfrac{13}{7}+\dfrac{2}{5}\right).\dfrac{2016}{2017}\)

=\(\dfrac{2016}{2017}.\left(\dfrac{1}{7}-\dfrac{2}{5}+\dfrac{13}{7}+\dfrac{2}{5}\right)\)

=\(\dfrac{2016}{2017}.2=\dfrac{4032}{2017}\)

16 tháng 11 2017

ủa sao ngộ z ?

16 tháng 11 2017

bn dợi mk lát nhé

16 tháng 11 2017

x,y tỉ lệ thuận với \(\dfrac{3}{4}\)\(\dfrac{4}{3}\)

\(\Rightarrow\dfrac{x}{\dfrac{3}{4}}=\dfrac{y}{\dfrac{4}{3}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có :

\(\dfrac{x}{\dfrac{3}{4}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{x+y}{\dfrac{3}{4}+\dfrac{4}{3}}=-\dfrac{50}{\dfrac{25}{12}}=-24\)

\(\dfrac{x}{\dfrac{3}{4}}=-24\Rightarrow x=-18\)

\(\dfrac{y}{\dfrac{4}{3}}=-24\Rightarrow y=-32\)

16 tháng 11 2017

Vì x tỉ lệ thuận với \(\dfrac{3}{4}\)\(\Rightarrow x=\dfrac{3}{4}.k\)

Vì y tỉ lệ thuận với \(\dfrac{4}{3}\Rightarrow y=\dfrac{4}{3}.k\)

\(\Rightarrow x+y=\dfrac{3}{4}.k+\dfrac{4}{3}.k\)

Mà x+y=50

\(\Rightarrow\dfrac{3}{4}.k +\dfrac{4}{3}.k=-50\)

\(\Rightarrow\left(\dfrac{3}{4}+\dfrac{4}{3}\right).k=-50\)

\(\Rightarrow\dfrac{25}{12}.k=-50\)

\(\Rightarrow k=-50:\dfrac{25}{12}\)

\(\Rightarrow k=-24\)

\(\Rightarrow x=\dfrac{3}{4}.\left(-24\right)=-18\)

Tick mk nha!!!

\(y=\dfrac{4}{3}.\left(-24\right)=-32\)

Vậy \(x=-18,y=-32\)

15 tháng 7 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\) \(\begin{cases} a = bk \\ c = dk \end{cases}\)

Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)

\(\dfrac{a.c}{b.d}=\dfrac{bk.dk}{b.d}=\dfrac{k^2.b.d}{b.d}=k^2\left(2\right)\)

Từ (1) và (2) suy ra: \(\dfrac{a.c}{b.d}=\dfrac{a^2+c^2}{b^2+d^2}\) \(\rightarrow đpcm\).


16 tháng 7 2017

Đừng hỏi tên tôi Kcj ^ ^

3 tháng 8 2017

a) \(\left(x+\dfrac{1}{2}\right)+\left(x+\dfrac{1}{6}\right)+\left(x+\dfrac{1}{12}\right)+....+\left(x+\dfrac{1}{9900}\right)\)

\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\right)=1\)

\(\Leftrightarrow50x+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)=1\)

\(\Leftrightarrow50x+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=1\)

\(\Leftrightarrow50x+\left(1-\dfrac{1}{100}\right)=1\)

\(\Leftrightarrow50x+\dfrac{99}{100}=1\)

\(\Leftrightarrow50x=\dfrac{1}{100}\Rightarrow x=\dfrac{1}{5000}\)

b) \(A=\dfrac{3^2}{1.4}+\dfrac{3^2}{4.7}+\dfrac{3^2}{7.10}+...+\dfrac{3^2}{202.205}\)

\(A=\dfrac{3^2}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{202}-\dfrac{1}{205}\right)\)

\(A=\dfrac{9}{3}\cdot\left(1-\dfrac{1}{205}\right)\)

\(A=\dfrac{9}{3}\cdot\dfrac{204}{205}=\dfrac{615}{205}\)

3 tháng 8 2017

a) \(\left(x+\dfrac{1}{2}\right)+\left(x+\dfrac{1}{6}\right)+\left(x+\dfrac{1}{12}\right)+....+\left(x+\dfrac{1}{9900}\right)=1\)

\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\right)=1\)

\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)=1\)

Có tất cả : (99 - 1) : 1 + 1 = 99 (số x)

\(\Rightarrow99x+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=1\)

\(\Rightarrow99x+\left(1-\dfrac{1}{100}\right)=1\)

\(\Rightarrow99x+\dfrac{99}{100}=1\Rightarrow99x=1-\dfrac{99}{100}\)

\(\Rightarrow99x=\dfrac{1}{100}\Rightarrow x=\dfrac{1}{100.99}=\dfrac{1}{9900}\)

b) \(A=\dfrac{3^2}{1.4}+\dfrac{3^2}{4.7}+\dfrac{3^2}{7.10}+....+\dfrac{3^2}{202.205}\)

\(A=\dfrac{3^2}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{202}-\dfrac{1}{205}\right)\)

\(A=\dfrac{9}{3}\cdot\left(1-\dfrac{1}{205}\right)\)

\(A=3\cdot\dfrac{204}{205}=\dfrac{615}{205}\)

8 tháng 6 2017

b,

\(B=\frac{1}{2000.1999}-\frac{1}{1999.1998}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow B=\frac{1}{1999.2000}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}\right)\)

\(\Rightarrow B=\frac{1}{1999.2000}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\right)\)

\(\Rightarrow B=\frac{1}{1999.2000}-\left(1-\frac{1}{1999}\right)\)

\(\Rightarrow B=\frac{1}{1999.2000}-\frac{1998}{1999}\)

\(\Rightarrow B=\frac{1}{1999}-\frac{1}{2000}-\frac{1998}{1999}\)

\(\Rightarrow B=\left(\frac{1}{1999}-\frac{1998}{1999}\right)-\frac{1}{2000}\)

\(\Rightarrow B=\frac{-1997}{1999}-\frac{1}{2000}\)

8 tháng 6 2017

Cảm ơn bn!Mặc dù mik chư hiểu z hết!haha