K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2020

a) \(\sqrt{x^4}=2\)( ĐK x ∈ R )

⇔ \(\sqrt{\left(x^2\right)^2}=2\)

⇔ \(\left|x^2\right|=2\)

⇔ \(\orbr{\begin{cases}x^2=2\\x^2=-2\left(loai\right)\end{cases}}\)

⇔ x2 - 2 = 0

⇔ ( x - √2 )( x + √2 ) = 0

⇔ x - √2 = 0 hoặc x + √2 = 0

⇔ x = ±√2 

b) \(3\sqrt{x+1}-8=0\)( ĐK x ≥ -1 )

⇔ \(3\sqrt{x+1}=8\)

⇔ \(\sqrt{x+1}=\frac{8}{3}\)

⇔ \(x+1=\frac{64}{9}\)

⇔ \(x=\frac{55}{9}\)( tm )

c) \(2\sqrt{x-3}+\sqrt{25x-75}=14\)( ĐK x ≥ 3 ) ( Vầy hợp lí hơn á )

⇔ \(2\sqrt{x-3}+\sqrt{5^2\left(x-3\right)}=14\)

⇔ \(2\sqrt{x-3}+5\sqrt{x-3}=14\)

⇔ \(7\sqrt{x-3}=14\)

⇔ \(\sqrt{x-3}=2\)

⇔ \(x-3=4\)

⇔ \(x=7\)( tm )

d) \(\sqrt{\left(3x-1\right)^2}=5\)( ĐK x ∈ R )

⇔ \(\left|3x-1\right|=5\)

⇔ \(\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)

e) \(\sqrt{x^2+4x+4}-6=0\)( ĐK x ∈ R )

⇔ \(\sqrt{\left(x+2\right)^2}=6\)

⇔ \(\left|x+2\right|=6\)

⇔ \(\orbr{\begin{cases}x+2=6\\x+2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-8\end{cases}}\)

1 tháng 11 2020

\(a)\)\(\sqrt{x^4}=2\)\(\Leftrightarrow\)\(x^2=2\)\(\Rightarrow\)\(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)

Vậy \(x=\sqrt{2}\)\(hoặc\)\(x=-\sqrt{2}\)

\(b)\)\(ĐK:x\ge0\)

\(3\sqrt{x+1}-8=0\)\(\Leftrightarrow\)\(3\sqrt{x}=8\)\(\Leftrightarrow\)\(\sqrt{x}=\frac{8}{3}\)\(\Leftrightarrow\)\(x=(\frac{8}{3})^2\)\(\Leftrightarrow\)\(x=\frac{64}{9}\)\((TM)\)

Vậy \(x=\frac{64}{9}\)

\(d)\)\(\sqrt{(3x-1)^2}=5\)\(\Leftrightarrow\)\(|3x-1|=5\)\((1)\)

  • Nếu \(x\ge\frac{1}{3}\)thì \(\left(1\right)\Leftrightarrow3x-1=5\)\(\Leftrightarrow\)\(3x=6\)\(\Leftrightarrow\)\(x=2\)\(\left(TM\right)\)
  • Nếu \(x< \frac{1}{3}\)thì \((1)\Leftrightarrow-\left(3x-1\right)=5\)\(\Leftrightarrow\)\(3x-1=-5\)\(\Leftrightarrow\)\(3x=-5+1\)\(\Leftrightarrow\)\(3x=-4\)\(\Leftrightarrow\)\(x=\frac{-4}{3}\left(TM\right)\)

Vậy \(x\in\hept{2;\frac{-4}{3}}\)

  • \(e)\)\(\sqrt{x^2+4x+4}-6=0\)\(\Leftrightarrow\)\(\sqrt{(x+2)^2}=6\)\(\Leftrightarrow\)\(|x+2|=6\)\(\left(2\right)\)

                -Nếu \(x\ge-2\)thì \(\left(2\right)\Leftrightarrow x+2=6\Leftrightarrow x=4(TM)\)

                -Nếu \(x< -2\)thì \(\left(2\right)\Leftrightarrow-\left(x+2\right)=6\Leftrightarrow x+2=-6\Leftrightarrow x=-8\left(TM\right)\)

Vậy \(x=4;x=-8\)

25 tháng 12 2020

a ⇒A=\(4\sqrt{4\times3}+3\sqrt{25\times3}-5\sqrt{16\times3}=8\sqrt{3}+15\sqrt{3}-20\sqrt{3}=3\sqrt{3}\)

b ĐKXĐ x≥2 ⇔\(\sqrt{x-2}+3\sqrt{x-2}=16\Leftrightarrow4\sqrt{x-2}=16\Leftrightarrow\sqrt{x-2}=4\Rightarrow x-2=16\Leftrightarrow x=18\)

25 tháng 12 2020

a.   \(A=4\sqrt{12}+3\sqrt{75}-5\sqrt{48}\)

          \(=8\sqrt{3}+15\sqrt{3}-20\sqrt{3}\)

          \(=3\sqrt{3}\)

b.    \(\sqrt{x-2}-\sqrt{9x-18}=16\)

   \(\Leftrightarrow\sqrt{x-2}-\sqrt{9\left(x-2\right)}=16\)

   \(\Leftrightarrow\sqrt{x-2}-3\sqrt{x-2}=16\)

   \(\Leftrightarrow-2\sqrt{x-2}=16\)

   \(\Leftrightarrow\sqrt{x-2}=-8\)  ( Vô lý )

   Vậy PT vô nghiệm

   

 

3 tháng 7 2018

\(B=2x-\sqrt{x^2+4x+4}=2x-\sqrt{x^2+2.x.2+2^2}\)

                                                   \(=2x-\sqrt{\left(x+2\right)^2}=2x-\left|x+2\right|\) (1)

Nếu \(x+2\ge0\Leftrightarrow x\ge-2\) thì pt (1) trở thành: 2x - x + 2 = x + 2

Nếu x + 2 < 0 <=> x < -2 thì pt (1) trở thành: 2x + x - 2 = 3x - 2

Vậy .......

P/s: Không chắc lắm, mong mọi người góp ý

3 tháng 7 2018

ơ ? bài này đứa lớp 1 cũng làm được mà ? trong bài kiếm tra có bài này à ?

10 tháng 4 2021

a) x^2 - 3x + 2 = 0

\(\Delta=b^2-4ac=\left(-3\right)^2-4.1.2=1\)

=> pt có 2 nghiệm pb

\(x_1=\frac{-\left(-3\right)+1}{2}=2\)

\(x_2=\frac{-\left(-3\right)-1}{2}=1\)

10 tháng 4 2021

a) Dễ thấy phương trình có a + b + c = 0 

nên pt đã cho có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = 2

b) \(\hept{\begin{cases}x+3y=3\left(I\right)\\4x-3y=-18\left(II\right)\end{cases}}\)

Lấy (I) + (II) theo vế => 5x = -15 <=> x = -3

Thay x = -3 vào (I) => -3 + 3y = 3 => y = 2

Vậy pt có nghiệm ( x ; y ) = ( -3 ; 2 )

24 tháng 7 2016

Đặt \(a=\sqrt{x+3}\) , \(b=\sqrt{x-3}\)

Ta có : \(A=\frac{\left(x+3\right)+2\sqrt{\left(x-3\right)\left(x+3\right)}}{2\left(x-3\right)+\sqrt{\left(x-3\right)\left(x+3\right)}}=\frac{a^2+2ab}{2b^2+ab}\)

\(=\frac{a^2+2ab}{2b^2+ab}=\frac{a\left(a+2b\right)}{b\left(a+2b\right)}=\frac{a}{b}=\frac{\sqrt{x+3}}{\sqrt{x-3}}\)

24 tháng 7 2016

giúp mình với

ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP​1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)  (căn 7 - căn căn 2 ) (1đ)2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)5. Cho biểu thức:...
Đọc tiếp

ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP

1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)  (căn 7 - căn căn 2 ) (1đ)

2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)

3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)
4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)

5. Cho biểu thức: (2,5đ)
\(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)với x >0, x khác 1 
Hãy tìm x để A có nghĩa rồi:
a/ Rút gọn A
b/ Tìm x biết A =-1 
6. Giai phương trình \(\sqrt{16x-32}-\sqrt{4x-8}+\sqrt{9x-18}=1\)(0,5đ)
7. Giai phương trình \(\sqrt{x^2+2x+6}=x+2\)(0,5đ)
8. Thực hiện phép tính: \(B=\sqrt{5}\left(1-\sqrt{5}\right)+\sqrt{\sqrt{5}+1}.\sqrt{\sqrt{5}-1}\)(0,5đ)
9. Rút gọn biểu thức E = \(\sqrt{\frac{b}{a}}+ab\sqrt{\frac{1}{ab}}-\frac{b}{a}.\sqrt{\frac{a}{b}}\)(0,5đ)
10. Giai phương trình sau: \(\sqrt{4x-12}-\sqrt{25x-75}-\sqrt{x-3}=4-\sqrt{16x-48}\)(0,5đ)
11. Cho biểu thức: \(F=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}-1}{\sqrt{a}+2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)với a >0, a khác 1
a/ Rút gọn F
b/ Tìm giá trị của a để trị F = -F
 

0