Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+12x+35\)
\(=x^2+5x+7x+35\)
\(=\left(x^2+5x\right)+\left(7x+35\right)\)
\(=x\left(x+5\right)+7\left(x+5\right)\)
\(=\left(x+5\right)\left(x+7\right)\)
b)\(x^2-x-56\)
\(=x^2+7x-8x-56\)
\(=\left(x^2+7x\right)-\left(8x+56\right)\)
\(=x\left(x+7\right)-8\left(x+7\right)\)
\(=\left(x+7\right)\left(x-8\right)\)
c)\(5x^2-x-4\)
\(=5x^2-5x+4x-4\)
\(=\left(5x^2-5x\right)+\left(4x-4\right)\)
\(=5x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(5x+4\right)\)
TL:
a)\(x^2+5x+7x+35\)
=\(x\left(x+5\right)+7\left(x+5\right)\)
=\(\left(x+7\right)\left(x+5\right)\)
b) \(x^2-x-56\)
=\(x^2+7x-8x-56\)
=\(x\left(x+7\right)-8\left(x+7\right)\)
=\(\left(x-8\right)\left(x+7\right)\)
d)\(4x^4+1=\left(2x^2\right)^2+4x^2+1-4x^2\)
=\(\left(2x^2+1\right)^2-4x^2\)
=\(\left(2x^2+1+4x\right)\left(2x^2+1-4x\right)\)
.......................(tự lm)
hc tốt
a) x2-x-56
=x2+7x-8x-56
=x(x+7)-8(x+7)
=(x-8)(x+7)
d) x2+12x+35
=x2+7x+5x+7
=x(x+7)+5(x+7)
=(x+5)(x+7)
e)5x2-x-4
=5x2+4x-5x-4
=x(5x+4)-1(5x+4)
=(x-1)(5x+4)
a) x2-7x+6= (x-6)(x-1)
câu c,e , g tương tự nha bạn
b) x4+64= x4+16x2+64-16x2=(x2+8)2-16x2=(x2+8-4x)(x2+8+4x)
các câu còn lại cũng tượng tự nha bạn
\(a,x^2-7x+6=x^2-6x-x+6\)
\(=x\left(x-6\right)-\left(x-6\right)=\left(x-1\right)\left(x-6\right)\)
\(b,x^4+64=\left(x^4+16x^2+64\right)-16x^2\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
\(c,x^2+12x+35=x^2+5x+7x+35\)
\(=x\left(x+5\right)+7\left(x+5\right)=\left(x+7\right)\left(x+5\right)\)
\(d,4x^4+1=\left(4x^4+4x^2+1\right)-4x^2\)
\(=\left(2x^2+1\right)-\left(2x\right)^2=\left(2x^2+2x+1\right)\left(2x^2-2x+1\right)\)
\(e,x^2-x-56=x^2-8x+7x-56\)
\(=x\left(x-8\right)+7\left(x-8\right)=\left(x+7\right)\left(x-8\right)\)
\(f,4x^2+81=\left(4x^4+36x^2+81\right)-36x^2\)
\(=\left(2x^2+9\right)^2-\left(6x\right)^2=\left(2x^2+6x+9\right)\left(2x^2-6x+9\right)\)
\(g,5x^2-x-4=5x^2-5x+4x-4\)
\(=5x\left(x-1\right)+4\left(x-1\right)=\left(5x+4\right)\left(x-1\right)\)
\(h,64x^4+y^4=\left(64x^4+16x^2y^2+y^4\right)-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2=\left(8x^2+y^2+4xy\right)\left(8x^2+y^2-4xy\right)\)
a) \(x^2-7x+6=x^2-6x-x+6\)
\(=x\left(x-6\right)-\left(x-6\right)\)
\(=\left(x-6\right)\left(x-1\right)\)
b) \(x^4+64=x^4+64+16x^2-16x^2\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2+8-4x\right)\left(x^2+8+4x\right)\)
c) \(x^2+12x+35=x^2+5x+7x+35\)
\(=x\left(x+5\right)+7\left(x+5\right)\)
\(=\left(x+5\right)\left(x+7\right)\)
d) \(4x^4+1=4x^4+1+4x^2-4x^2\)
\(=\left(2x^2+1\right)^2-\left(2x\right)^2\)
\(=\left(2x^2+1-2x\right)\left(2x^2+1+2x\right)\)
e) \(x^2-x-56=x^2+7x-8x-56\)
\(=x\left(x+7\right)-8\left(x+7\right)\)
\(=\left(x+7\right)\left(x-8\right)\)
f) \(4x^4+81=4x^4+81+36x^2-36x^2\)
\(=\left(2x^2+9\right)^2-\left(6x\right)^2\)
\(=\left(2x^2+9-6x\right)\left(2x^2+9+6x\right)\)
g) \(5x^2-x-4=5x^2+4x-5x-4\)
\(=x\left(5x+4\right)-\left(5x+4\right)\)
\(=\left(5x+4\right)\left(x-1\right)\)
h) \(64x^4+y^4=64x^4+y^4+16x^2y^2-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)
bài 1 câu a) đầu tiên
\(x^2-x-56=x^2+7x-8x-8.7=x\left(x+7\right)-8\left(x+7\right)=\left(x-8\right)\left(x+7\right)\)
a)x^2-(a+b)x+ab
= x^2 - ax - bx + ab
= (x^2 - ax) - (bx - ab)
= x(x-a) - b(x-a)
= (x-b)(x-a)
b)7x^3-3xyz-21x^2+9z
=
c)4x+4y-x^2(x+y)
= 4(x + y) - x^2(x+y)
= (4-x^2) (x+y)
= (2-x)(2+x)(x+y)
d) y^2+y-x^2+x
= (y^2 - x^2) + (x+y)
= (y-x)(y+x)+ (x+y)
= (y-x+1) (x+y)
e)4x^2-2x-y^2-y
= [(2x)^2 - y^2] - (2x +y)
= (2x-y)(2x+y) - (2x+y)
= (2x -y -1)(2x+y)
f)9x^2-25y^2-6x+10y
=
a) x² - x - 56
b) x^4 + 64
c) 4x^4 + 81
d) x².+ 12x + 35
e) 5x² - x - 4
g) 4x^4 + 1
h) 64x^4 + y^4
a)\(x^2-x-56\)
\(=x^2-8x+7x-56\)
\(=\left(x^2-8x\right)+\left(7x-56\right)\)
\(=x\left(x-8\right)+7\left(x-8\right)\)
\(=\left(x-8\right)\left(x+7\right)\)
b)\(x^4+64\)
\(=\left(x^2\right)^2+8^2\)
\(=\left(x^2\right)^2+16x^2+8^2-16x^2\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2+8-4x\right)\left(x^2+8+4x\right)\)
c)\(4x^4+81\)
\(=\left(2x^2\right)^2+9^2\)
\(=\left(2x^2\right)^2+36x^2+9^2-36x^2\)
\(=\left(2x^2+9\right)^2-\left(6x\right)^2\)
\(=\left(2x^2+9-6x\right)\left(2x^2+9+6x\right)\)
d)\(x^2+12x+35\)
\(=x^2+5x+7x+35\)
\(=\left(x^2+5x\right)+\left(7x+35\right)\)
\(=x\left(x+5\right)+7\left(x+5\right)\)
\(=\left(x+5\right)\left(x+7\right)\)
e)\(5x^2-x-4\)
\(=5x^2-5x+4x-4\)
\(=\left(5x^2-5x\right)+\left(4x-4\right)\)
\(=5x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(5x+4\right)\)
g)\(4x^4+1\)
\(=\left(2x^2\right)^2+1^2\)
\(=\left(2x^2\right)^2+4x^2+1^2-4x^2\)
\(=\left(2x^2+1\right)^2-4x^2\)
\(=\left(2x^2+1-4x\right)\left(2x^2+1+4x\right)\)
h)\(64x^4+y^4\)
\(=\left(8x^2\right)^2+\left(y^2\right)^2\)
\(=\left(8x^2\right)^2+16x^2y^2+\left(y^2\right)^2-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)