K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2016

a)x2+2xy+y2-x-y-12

\(=\left(x+y\right)^2-\left(x+y\right)-12\)

Đặt \(t=x+y\) ta có:

\(t^2-t-12=t^2+3t-4t-12\)

\(=t\left(t+3\right)-4\left(t+3\right)\)

\(=\left(t-4\right)\left(t+3\right)\)

\(=\left(x+y-4\right)\left(x+y+3\right)\)

 

 

10 tháng 10 2016

b sai đề

b: \(=\left(x^2+4x-3\right)^2-2x\left(x^2+4x-3\right)-3x\left(x^2+4x-3\right)+6x^2\)

\(=\left(x^2+4x-3\right)\left(x^2+4x-3-2x\right)-3x\left(x^2+4x-3-2x\right)\)

\(=\left(x^2+2x-3\right)\left(x^2+4x-3-3x\right)\)

\(=\left(x^2+x-3\right)\left(x+3\right)\left(x-1\right)\)

c: \(=a^3-3a^2b+3ab^2-b^3+b^3-3b^2c+3bc^2-c^3+\left(c-a\right)^3\)

\(=a^3-3a^2b+3ab^2-3b^2c+3bc^2-c^3+c^3-3a^2c+3ac^2-a^3\)

\(=-3a^2b+3ab^2-3b^2c+3bc^2-3a^2c+3ac^2\)

\(=-3\left(a^2b-ab^2+b^2c-bc^2+a^2c-ac^2\right)\)

 

12 tháng 8 2015

a) x^4 - x^3 - x + 1 

= x^3 ( x - 1 ) - ( x- 1 )

= ( x^3 - 1 )(x - 1)

= ( x- 1 )^2 (x^2 + x +  1 )

 

12 tháng 8 2015

a)x4-x3-x+1

=x3(x-1)-(x-1)

=(x-1)(x3-1)

=(x-1)(x-1)(x2+x+1)

=(x-1)2(x2+x+1)

b)5x2-4x+20xy-8y

(sai đề)

 

19 tháng 10 2020

a) 5x3 - 40 = 5( x3 - 8 ) = 5( x - 2 )( x2 + 2x + 4 )

b) x2z + 4xyz + 4y2z = z( x2 + 4xy + 4y2 ) = z( x + 2y )2

c) 4x2 - y2 - 6x + 3y = ( 4x2 - y2 ) - ( 6x - 3y ) = ( 2x - y )( 2x + y ) - 3( 2x - y ) = ( 2x - y )( 2x + y - 3 )

d) x2 + 2x - 4y2 + 1 = ( x2 + 2x + 1 ) - 4y2 = ( x + 1 )2 - ( 2y )2 = ( x - 2y + 1 )( x + 2y + 1 )

e) 3x2 - 3y2 - 12x + 12y = 3( x2 - y2 - 4x + 4y ) = 3[ ( x2 - y2 ) - ( 4x - 4y ) ] = 3[ ( x - y )( x + y ) - 4( x - y ) ] = 3( x - y )( x + y - 4 )

f) x3 + 5x2 + 4x + 20 = x2( x + 5 ) + 4( x + 5 ) = ( x + 5 )( x2 + 4 )

g) x3 - x2 - 25x + 25 = x2( x - 1 ) - 25( x - 1 ) = ( x - 1 )( x2 - 25 ) = ( x - 1 )( x - 5 )( x + 5 )

19 tháng 10 2020

a) \(5x^3-40=5\left(x^3-8\right)=5\left(x-2\right)\left(x^2+2x+4\right)\)

b) \(x^2z+4xyz+4y^2z=z\left(x^2+4xy+4y^2\right)=z\left(x+2y\right)^2\)

c) \(4x^2-y^2-6x+3y=\left(4x^2-y^2\right)-\left(6x-3y\right)\)

\(=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)

d) \(x^2+2x-4y^2+1=x^2+2x+1-4y^2\)

\(=\left(x+1\right)^2-4y^2=\left(x+2y+1\right)\left(x-2y+1\right)\)

e) \(3x^2-3y^2-12x+12y=3\left(x^2-y^2-4x+4y\right)\)

\(=3\left[\left(x^2-y^2\right)-\left(4x-4y\right)\right]=3\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]\)

\(=3\left(x-y\right)\left(x+y+4\right)\)

f) \(x^3+5x^2+4x+20=\left(x^3+5x^2\right)+\left(4x+20\right)\)

\(=x^2.\left(x+5\right)+4\left(x+5\right)=\left(x^2+4\right)\left(x+5\right)\)

g) \(x^3-x^2-25x+25=\left(x^3-x^2\right)-\left(25x-25\right)\)

\(=x^2\left(x-1\right)-25\left(x-1\right)=\left(x-1\right)\left(x^2-25\right)\)

\(=\left(x-1\right)\left(x-5\right)\left(x+5\right)\)

25 tháng 7 2017

Bài 1 : 

a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

b)  \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)

c)  \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

d)   \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)

BÀi 2 : 

a)   \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)

\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)

b)   \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)

c)  \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)

\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)

\(=\left(b+c-a\right)\left(d-c^2\right)\)

BÀi 3 : 

a)  \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)

b)  \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)

c)   \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)

d)   \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\)  \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)

12 tháng 7 2019

a,\(xy+3x-7y-21\)

\(=x\left(y+3\right)-7\left(y+3\right)\)

\(=\left(y+3\right)\left(x-7\right)\)

12 tháng 7 2019

\(b,2xy-15-6x+5y\)

\(=\left(2xy-6x\right)+\left(-15+5y\right)\)

\(=2x\left(y-3\right)-5\left(3-y\right)\)

\(=2x\left(y-3\right)+5\left(y-3\right)\)

\(=\left(y-3\right)\left(2x+5\right)\)

25 tháng 10 2015

\(a,y-x^2y+2xy^2-y^3=y(1-x^2+2xy-y^2) =y[1-(x^2-2xy+y^2)]=y[1-(x-y)^2] =y(1-x+y)(1+x-y) =y(x+y-1)(x-y+1) \)

18 tháng 10 2018

16x4y2-25a2b2

16 tháng 10 2019

1) \(x^6+1\)

\(=x^6+x^4-x^4+x^2-x^2+1\)

\(=\left(x^6-x^4+x^2\right)+\left(x^4-x^2+1\right)\)

\(=x^2\left(x^4-x^2+1\right)+\left(x^4-x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)

2) \(x^6-y^6\)

\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)