Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
b) \(x^2-25+y^2+2xy\)
\(=\left(x^2+2xy+y^2\right)-25\)
\(=\left(x+y\right)^2-5^2\)
\(=\left(x+y+5\right)\left(x+y-5\right)\)
a) \(3x^2-3y^2=3\left(x^2-y^2\right)=3\left(x-y\right)\left(x+y\right)\)
b) \(x^2-xy+7x-7y=\left(x^2+7x\right)-\left(xy+7y\right)\)
\(=x\left(x+7\right)-x\left(y+7\right)=x\left(x+7-y-7\right)=x\left(x-y\right)\)
c)\(x^2-3x+2=x^2-2x-x+2=\left(x^2-x\right)-\left(2x-2\right)\)
\(=x\left(x-1\right)-2\left(x-1\right)=\left(x-2\right)\left(x-1\right)\)
d) \(x^3+2x^2y+xy^2-16x=x\left(x^2+2xy+y^2-16\right)\)
\(=x\left[\left(x+y\right)^2-16\right]=x\left(x+y-4\right)\left(x+y+4\right)\)
A = xy + y - 2x - 2
= y( x + 1 ) - 2( x + 1 )
= ( x + 1 )( y - 2 )
B = x2 - 3x + xy - 3y
= x( x - 3 ) + y( x - 3 )
= ( x - 3 )( x + y )
C = 3x2 - 3xy - 5x + 5y
= 3x( x - y ) - 5( x - y )
= ( x - y )( 3x - 5 )
D = xy + 1 + x + y
= y( x + 1 ) + ( x + 1 )
= ( x + 1 )( y + 1 )
E = ax - bx + ab - x2
= ( ax - x2 ) + ( ab - bx )
= x( a - x ) + b( a - x )
= ( a - x )( x + b )
F = x2 + ab + ax + bx
= ( ax + x2 ) + ( ab + bx )
= x( a + x ) + b( a + x )
= ( a + x )( x + b )
G = a3 - a2x - ay + xy
= a2( a - x ) - y( a - x )
= ( a - x )( a2 - y )
Bonus : = ( a - x )[ a2 - ( √y )2 ]
= ( a - x )( a - √y )( a + √y )
H = 2xy + 3z + 6y + xz
= ( 6y + 2xy ) + ( 3z + xz )
= 2y( 3 + x ) + z( 3 + x )
= ( 3 + x )( 2y + z )
A = xy + y - 2x - 2 = y(x + 1) - 2(x + 1) = (y - 2)(x + !1
B = x2 - 3x + xy - 3y = x(x - 3) + y(x - 3) = (x + y)(x - 3)
C = 3x2 - 3xy - 5x + 5y = 3x(x - y) - 5(x - y) = (3x - 5)(x - y)
D = xy + 1 + x + y = xy + x + y + 1 = x(y + 1) + (y + 1) = (x + 1)(y + 1)
E = ax - bx + ab - x2 = ax - x2 + ab - bx = a(a - x) - b(a - x) = (a - b)(a - x)
F = x2 + ab + ax + bx = ab + ax + bx + x2 = a(b + x) + x(b + x) = (a + x)(b + x)
G = a3 - a2x - ay + xy = a2(a - x) - y(a - x) = (a2 - y)(a - x)
H = 2xy + 3z + 6y + xz = 2xy + 6y + 3z + xz = 2y(x + 3) + z(x + 3) = (2y + z)(x + 3)
=(3x+3y)-(x^2+2xy+y^2)=3(x+y)-(x+y)^2=k rõ nữa
=(4x^2-4xy) -(6y^2-6xy)= 4x(x-y)+6y(x-y)=2(x-y)(2x+3y)
a) 36 - 4a2 + 20ab - 25b2 = 36 - ( 4a2 - 20ab + 25b2 ) = 62 - ( 2a - 5b )2 = ( 6 - 2a + 5b )( 6 + 2a - 5b )
b) ( xy + 4 )2 - 4( x + y )2 = ( xy + 4 )2 - 22( x + y )2 = ( xy + 4 )2 - [ 2( x + y ) ]2
= ( xy + 4 )2 - ( 2x + 2y )2 = ( xy + 4 - 2x - 2y )( xy + 4 + 2x + 2y )
= [ x( y - 2 ) - 2( y - 2 ) ][ x( y + 2 ) + 2( y + 2 ) ]
= ( y - 2 )( x - 2 )( y + 2 )( x + 2 )
c) x2 + y2 - x2y2 + xy - x - y
= ( x2 - x2y2 ) + ( y2 - y ) + ( xy - x )
= x2( 1 - y2 ) + y( y - 1 ) + x( y - 1 )
= x2( 1 - y )( 1 + y ) - y( 1 - y ) - x( 1 - y )
= ( 1 - y )[ x2( 1 + y ) - y - x ) ]
= ( 1 - y )( x2 + x2y - y - x )
= ( 1 - y )[ ( x2 - x ) + ( x2y - y ) ]
= ( 1 - y )[ x( x - 1 ) + y( x2 - 1 ) ]
= ( 1 - y )[ x( x - 1 ) + y( x - 1 )( x + 1 ) ]
= ( 1 - y )( x - 1 )[ x + y( x + 1 ) ]
= ( 1 - y )( x - 1 )( x + xy + y )
d) 3x + 3y - x2 - 2xy - y2
= 3( x + y ) - ( x2 + 2xy + y2 )
= 3( x + y ) - ( x + y )2
= ( x + y )( 3 - x - y )
e) ( 2xy + 1 )2 - ( 2x + y )2
= ( 2xy + 1 - 2x - y )( 2xy + 1 + 2x + y )
= [ ( 2xy - 2x ) - ( y - 1 ) ][ ( 2xy + 2x ) + ( y + 1 ) ]
= [ 2x( y - 1 ) - ( y - 1 ) ][ 2x( y + 1 ) + ( y + 1 ) ]
= ( y - 1 )( 2x - 1 )( y + 1 )( 2x + 1 )
a) \(36-4a^2+20ab-25b^2\)
\(=36-\left(4a^2-20ab+25b^2\right)\)
\(=36-\left(2a-5b\right)^2\)
\(=\left(6-2a+5b\right)\left(6+2a-5b\right)\)
b) \(\left(xy+4\right)^2-4\left(x+y\right)^2\)
\(=\left(xy+4-2x-2y\right)\left(xy+4+2x+2y\right)\)
\(=\left[x\left(y-2\right)-2\left(y-2\right)\right]\left[x\left(y+2\right)+2\left(y+2\right)\right]\)
\(=\left(x+2\right)\left(x-2\right)\left(y+2\right)\left(y-2\right)\)
c) \(x^2+y^2-x^2y^2+xy-x-y\)
\(=-\left(x^2y^2-x^2\right)+\left(y^2-y\right)+\left(xy-x\right)\)
\(=-x^2\left(y-1\right)\left(y+1\right)+y\left(y-1\right)+x\left(y-1\right)\)
\(=\left(y-1\right)\left(-x^2y-x^2+y+x\right)\)
\(=\left(1-y\right)\left[\left(x^2y-y\right)+\left(x^2-x\right)\right]\)
\(=\left(1-y\right)\left(x-1\right)\left(xy+y+x\right)\)
a/ \(=3y^2-6y-2x+1\)
b/ \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
c/ \(=\left(2-x\right)^3\)
d/ \(=xy^2+x^2y+3xy+x^2y+x^3+3x^2-3xy-3x^2-9x\)
\(=xy\left(y+x+3\right)+x^2\left(y+x+3\right)-3x\left(y+x+3\right)\)
\(=\left(xy+x^2-3x\right)\left(y+x+3\right)=x\left(y+x-3\right)\left(y+x+3\right)\)
e/ \(=xy-x^2+2x-y^2+xy-2y\)
\(=x\left(y-x+2\right)-y\left(y-x+2\right)=\left(x-y\right)\left(y-x+2\right)\)
Bài làm
a, x2 - 3x + xy - 3y
= x(x - 3) + y(x - 3)
= (x - 3)(x + y)
b, x2 + y2 - 2xy - 25
= (x2 - 2xy + y2) - 25
= (x + y)2 - 25
= (x + y + 5)(x + y - 5)
a) x2 - 3x + xy - 3y
= x(x - 3) + y(x - 3)
= (x + y)(x - 3)
b) x2 + y2 - 2xy - 25
= (x - y)2 - 52
= (x - y + 5)(x - y - 5)