K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2015

b)x2+2xy+y2-16=(x+y)2-42=(x+y+4)(x+y-4)

c)3x2+5x-3xy-5y=x(3x+5)-y(3x+5)=(3x+5)(x-y)

d)4x2-6x3y-2x2+8x=2x(2x-3x2y-x+4)

e)x2-4-2xy+y2=(x2-2xy+y2)-4=(x-y)2-22=(x-y-2)(x-y+2)

k)x2-y2-z2-2yz=x2-(y+z)2=(x-y-z)(x+y+z)

m)6xy+5x-5y-3x2-3y2=3(x2-2xy+y2)+5(x-y)=3(x-y)2+5(x-y)=(x-y)(3x-3y+5)


 

27 tháng 6 2016

b. (x^2+2xy+y^2)-16 =(x+y)^2-16=(x+y+4)(x+y-4)

a) Ta có: \(x^2-25+y^2+2xy\)

\(=\left(x^2+2xy+y^2\right)-25\)

\(=\left(x+y\right)^2-5^2\)

\(=\left(x+y-5\right)\left(x+y+5\right)\)

c) Ta có: \(3x^2-6xy+3y^2\)

\(=3\left(x^2-2xy+y^2\right)\)

\(=3\left(x-y\right)^2\)

d) Ta có: \(2x^2+2y^2-x^2z+z-y^2z-2\)

\(=2\left(x^2+y^2-1\right)-z\left(x^2+y^2-1\right)\)

\(=\left(x^2+y^2-1\right)\left(2-z\right)\)

e) Ta có: \(x^2-2xy+y^2-16\)

\(=\left(x-y\right)^2-4^2\)

\(=\left(x-y-4\right)\left(x-y+4\right)\)

30 tháng 7 2020

cái cuối hằng đẳng thức là xong mà bạn

30 tháng 7 2020

a) \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2\)

\(=\left(4x^2-3x-18-4x^2-3x\right)\left(4x^2-3x-18+4x^2+3x\right)\)

\(=\left(-6x-18\right)\left(8x^2-18\right)\)

b) \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)

\(=\left[3\left(x+y-1\right)\right]^2-\left[2\left(2x+3y+1\right)\right]^2\)

\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)

\(=\left(3x+3y-3+4x+6y+2\right)\left(3x+3y-3-4x-6y-2\right)\)

\(=\left(7x+9y-1\right)\left(-x-3y-5\right)\)

c) \(-4x^2+12xy-9y^2+25\)

\(=-\left(2x\right)^2+2.2x.3y-\left(3y\right)^2+5^2\)

\(=-\left[\left(2x\right)^2-2.2x.3y+\left(3y\right)^2-5^2\right]\)

\(=-\left[\left(2x-3y\right)^2-5^2\right]\)

\(=-\left(2x-3y-5\right)\left(2x-3y+5\right)\)

d) \(x^2-2xy+y^2-4m^2+4mn-n^2\)

\(=\left(x^2-2xy+y^2\right)-4m\left(m-n\right)-n^2\)

\(=\left(x-y\right)^2-4m\left(m-n\right)-n^2\)

\(=\left(x-y-n\right)\left(x-y+n\right)-4m\left(m-n\right)\)

18 tháng 6 2016

a) = (x + 3)2 - y2 = (x + 3 - y)(x + 3 + y)

b) = x2(x - 3) -4(x - 3) = (x - 3)(x2 - 4) = (x - 3)(x - 2)(x + 2)

c) = 3x(x - y) - 5(x - y) = (x - y)(3x - y)

d) Nhầm đề. tui sửa lại x3 + y3 + 2x2 - 2xy + 2y2

= x3 + y3 + 2(x2 - xy + y2) = (x + y)(x2 - xy + y2) + 2(x2 - xy + y2) = (x2 - xy + y2)(x + y + 2)

e) = x4 - x3 - x3 + x2 - x2 + x + x - 1 = x3(x - 1) - x2(x - 1) - x(x - 1) + x - 1 = (x - 1)(x3 - x2 - x + 1) = (x - 1)(x - 1)(x2 - 1) = (x - 1)3(x + 1)

f) = x3 - 3x2 - x2 + 3x + 9x - 27 = x2(x - 3) - x(x - 3) + 9(x - 3) = (x-3)(x2 - x + 9)

g) chắc là 3xyz 

= x2y + xy2 + y2z + yz2 + x2z + xz2 + 3xyz = x2y + xy2 + xyz + y2z + yz2 + xyz + x2z + xz2 + xyz = (x + y + z)(xy + yz + xz)

h) = 23 -(3x)3 = (2 - 3x)(4 + 6x + 9x2)

i) = (x + y - x + y)(x + y + x - y) = 2y*2x = 4xy

k) = (x3 - y3)(x3 + y3) = (x - y)(x2 + xy +y2)(x + y)(x2 - xy +y2).

Bài 3:

a) Ta có: \(x^2+4xy-21y^2\)

\(=x^2+7xy-3xy-21y^2\)

\(=x\left(x+7y\right)-3y\left(x+7y\right)\)

\(=\left(x+7y\right)\left(x-3y\right)\)

b) Ta có: \(5x^2+6xy+y^2\)

\(=5x^2+5xy+xy+y^2\)

\(=5x\left(x+y\right)+y\left(x+y\right)\)

\(=\left(x+y\right)\left(5x+y\right)\)

c) Ta có: \(x^2+2xy-15y^2\)

\(=x^2+5xy-3xy-15y^2\)

\(=x\left(x+5y\right)-3y\left(x+5y\right)\)

\(=\left(x+5y\right)\left(x-3y\right)\)

d) Ta có: \(\left(x-y\right)^2+4\left(x-y\right)-12\)

\(=\left(x-y\right)^2+6\left(x-y\right)-2\left(x-y\right)-12\)

\(=\left(x-y\right)\left(x-y+6\right)-2\left(x-y+6\right)\)

\(=\left(x-y+6\right)\left(x-y-2\right)\)

e) Ta có: \(x^2-7xy+10y^2\)

\(=x^2-2xy-5xy+10y^2\)

\(=x\left(x-2y\right)-5y\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x-5y\right)\)

f) Ta có: \(x^2yz+5xyz-14yz\)

\(=yz\left(x^2+5x-14\right)\)

\(=yz\left(x^2+7x-2x-14\right)\)

\(=yz\left[x\left(x+7\right)-2\left(x+7\right)\right]\)

\(=yz\left(x+7\right)\left(x-2\right)\)

24 tháng 10 2021

A) x2 -3x+xy-3y=x2+xy-3x-3y=x(x+y)-3(x+y)=(x+y)(x-3)

24 tháng 10 2021

\(x^2-3x+xy-3y\)

\(=\left(x^2+xy\right)-\left(3x+3y\right)\)

\(=x.\left(x+y\right)-3.\left(x+y\right)\)

\(=\left(x-3\right).\left(x+y\right)\)

\(2x^2-x+2xy-y\)

\(=2x^2-\left(x-2xy+y\right)\)

\(=2x^2-\left(x-y\right)^2\)

\(=\left(\sqrt{2}x\right)^2-\left(x-y\right)^2\)

\(=\left(\sqrt{2}x-x+y\right).\left(\sqrt{2}x+x-y\right)\)

\(x^4+x^3+2x^2+x+1\)

\(=\left(x^4+2x^2+1\right)+\left(x^3+x\right)\)

\(=\left(x^2+1\right)^2+x.\left(x^2+1\right)\)

\(=\left(x^2+1\right).\left(x^2+1+x\right)\)

\(16+2xy-x^2-y^2\)

\(=16-x^2+2xy-y^2\)

\(=16-\left(x^2-2xy+y^2\right)\)

\(=4^2-\left(x-y\right)^2\)

\(=[4-\left(x-y\right)].[4+\left(x-y\right)]\)

\(=\left(4-x+y\right).\left(4+x-y\right)\)

30 tháng 7 2020

a) \(\left(xy+1\right)^2-\left(x+y\right)^2\)

\(=\left(xy+1-x+y\right)\left(xy+1+x-y\right)\)

b) \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=\left(x+y-x+y\right)\left[\left(x^2+2xy+y^2\right)+x^2-y^2+\left(x^2-2xy+y^2\right)\right]\)

\(=2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\left(3x^2+y^2\right)\)

c) \(3x^4y^2+3x^3y^2+3xy^2+3y^2\)

\(=3y^2\left(x^4+x^3+x+1\right)\)

d) \(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)\)

\(=4\left[\left(x^2-y^2\right)-2\left(x-ay\right)-\left(a^2-1\right)\right]\)

\(=4\left[\left(x^2-y^2\right)-\left(2x-2ay\right)-\left(a^2-1\right)\right]\)

\(=4\left(x^2-y^2-2x+2ay-a^2+1\right)\)

P/s: Ko chắc!

NV
31 tháng 7 2020

c/

\(=3y^2\left(x^4+x^3+x+1\right)\)

\(=3y^2\left[x^3\left(x+1\right)+x+1\right]\)

\(=3y^2\left(x^3+1\right)\left(x+1\right)\)

\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)

d/

\(=\left(4x^2-8x+4\right)-\left(4y^2-8ay+4a^2\right)\)

\(=4\left(x-1\right)^2-4\left(y-a\right)^2\)

\(=4\left[\left(x-1\right)^2-\left(y-a\right)^2\right]\)

\(=4\left(x-1-y+a\right)\left(x-1+y-a\right)\)