Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
a)
\(14x^2y-21xy^2+28x^2y^2\)
\(=7xy(2x-3y+4xy)\)
b) \(x(x+y)-5x-5y=x(x+y)-5(x+y)=(x-5)(x+y)\)
c)
\(10x(x-y)-8(y-x)=10x(x-y)+8(x-y)\)
\(=(x-y)(10x+8)=2(x-y)(5x+4)\)
a. \(14x^2y-21xy^2+28x^2y^2\)
\(=7xy\left(2x-3y+4xy\right)\)
b. \(x\left(x+y\right)-5x-5y\)
\(=x\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x-5\right)\left(x+y\right)\)
c. \(10x\left(x-y\right)-8\left(y-x\right)\)
\(=10x\left(x-y\right)+8\left(x-y\right)\)
\(=\left(10x+8\right)\left(x-y\right)\)
d. \(\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1+x+1\right)\left(3x+1-x-1\right)\)
\(=2x\left(4x+2\right)\)
\(=4x\left(2x+1\right)\)
e. Vì bài này giải không ra nên mình nghĩ nó sai đề, sửa lại tí nhé!
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz+zy+z^2-3xy\right)\)
g. \(5x^2-10xy+5y^2-20z^2\)
\(=5\left(x^2-2xy+y^2-4z^2\right)\)
\(=5\left[\left(x-y^2\right)-4z^2\right]\)
\(=5\left(x-y+z\right)\left(x-y-z\right)\)
h. \(x^3-x+3x^2y+3xy^3+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
i. \(x^2+7x-8\)
\(=x^2-x+8x-8\)
\(=x\left(x-1\right)+8\left(x-1\right)\)
\(=\left(x+8\right)\left(x-1\right)\)
a) 3x - 3y
= 3 ( x- y )
b) 2x^2 + 5x^3 + x^2y
= x^2 ( 2+ 5x + y)
c) 14x^2 --21xy^2 + 28x^2y^2
= 7x ( 2x - 3y^2 + 4xy^2)
d) 4x^3 - 14x^2
= x^2 ( 4x - 14 )
e) 5y^10 + 15y^6
= 5y^6 (y^4 + 3 )
f) 9x^2y^2 + 15x^2y -21xy
= 3xy( 3xy + 5x - 7)
g) x( y-1 ) - y ((y-1)
=(y -1) (x-y)
1.a)\(20x-5y=5\left(4x-y\right)\)
b)\(5x\left(x-1\right)-3x\left(x-1\right)=\left(5x-3x\right)\left(x-1\right)=2x\left(x-1\right)\)
c)\(x\left(x+y\right)-6x-6y=x\left(x+y\right)-6\left(x+y\right)=\left(x-6\right)\left(x+y\right)\)
d)\(6x^3-9x^2=3x^2\left(2x-3\right)\)
e)\(4x^2y-8xy^2+10x^2y^2=2xy\left(2x-8y+10xy\right)\)
g)\(20x^2y-12x^3=4x^2\left(5y-3x\right)\)
h)\(8x^4+12x^2y-16x^3y^4=4x^2\left(2x^2+12y-16xy^4\right)\)
2.a)\(3x\left(x+1\right)-5y\left(x+1\right)=\left(3x-5y\right)\left(x+1\right)\)
b)\(3x\left(x-6\right)-2\left(x-6\right)=\left(3x-2\right)\left(x-6\right)\)
c)\(4y\left(x-1\right)-\left(1-x\right)=4y\left(x-1\right)+\left(x-1\right)=\left(4y+1\right)\left(x-1\right)\)
d)\(\left(x-3\right)^3+3-x=\left(x-3\right)^3-\left(x-3\right)=\left(x-3\right)\left[\left(x-3\right)^2-1\right]=\left(x-3\right)\left(x-2\right)\left(x-4\right)\)
e)\(7x\left(x-y\right)-\left(y-x\right)=7x\left(x-y\right)+\left(x-y\right)=\left(7x+1\right)\left(x-y\right)\)
h)\(3x^3\left(2y-3z\right)-15x\left(2y-3z\right)^2=3x\left(2y-3z\right)\left[x^2-5\left(2y-3z\right)\right]\)
k)Sai đề: \(3x\left(z+2\right)+5\left(-z-2\right)=3x\left(z+2\right)-5\left(z+2\right)=\left(3x-5\right)\left(z+2\right)\)
l)\(18x^2\left(3+x\right)+3\left(x+3\right)=3\left(x+3\right)\left(6x^2+1\right)\)
m)\(14x^2y-21xy^2+28x^2y^2=7xy\left(2x-3y+4xy\right)\)
n)\(10x\left(x-y\right)-8y\left(y-x\right)=10x\left(x-y\right)+8y\left(x-y\right)=2\left(5x+4y\right)\left(x-y\right)\)
a) 5x ( x - 2000 ) - x + 2000 = 0
5x ( x - 2000 ) - ( x - 2000 ) = 0
5x ( x - 2000 ) = 0
\(\Rightarrow\orbr{\begin{cases}5x=0\\x-2000=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2000\end{cases}}\)
Vậy ....
b) x3 - 13x = 0
x ( x2 - 13 ) = 0
x ( x - \(\sqrt{13}\)) - ( x + \(\sqrt{13}\)) = 0
\(\Rightarrow\hept{\begin{cases}x=0\\x-\sqrt{13}\\x+\sqrt{13}\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x=\sqrt{13}\\x=\sqrt{-13}\end{cases}}\)
Vậy ....
a) x2 + 6 + 9
= x2 + 2 . 3 . x + 32
= ( x + 3 )2
b) 10x - 25 - x2
= - ( x2 - 10x + 25 )
= - ( x - 5 )2
c) 8x3 - 1/8
= ( 2x )3 - ( 1/2 )3
= ( 2x - 1/2 ) ( 4x2 + x + 1/4 )
d) 1/25 x2 - 64x2
= ( 1/5x )2 - ( 8x )2
= ( 1/5x + 8x ) ( 1/5 - 8x )
\(x^3-13x=0\)
<=> \(x\left(x^2-13\right)=0\)
<=> \(x\left(x-\sqrt{13}\right)\left(x+\sqrt{13}\right)=0\)
<=> \(x=0\)
hoặc \(x-\sqrt{13}=0\)
hoặc \(x+\sqrt{13}=0\)
<=> .....
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
a) A = (x + 1)(y - 2) - (2 - y)2
= -[(x + 1)(2 - y) + (2 - y)2]
= -[(x + 1 - 2 + y)(2 - y)]
= -[(x - 1 + y)(2 - y)]
= (x - 1 + y)(y - 2)
Bài 2:
a) \(A=\left(x+1\right)\left(y-2\right)-\left(2-y\right)^2\)
\(A=\left(x+1\right)\left(y-2\right)-\left(y-2\right)^2\)
\(A=\left(y-2\right)\left(x+1-y+2\right)\)
\(A=\left(y-2\right)\left(x-y+3\right)\)
b) \(B=x^2-6xy+9y^2+4x-12y\)
\(B=\left[x^2-2\cdot x\cdot3y+\left(3y\right)^2\right]+4\left(x-3y\right)\)
\(B=\left(x-3y\right)^2+4\left(x-3y\right)\)
\(B=\left(x-3y\right)\left(x-3y+4\right)\)
Bài 3:
a) \(3\left(x-2\right)\left(x+3\right)-x\left(3x+1\right)=2\)
\(\left(3x^2+3x-18\right)-\left(3x^2+x\right)-2=0\)
\(3x^2+3x-18-3x^2-x-2=0\)
\(2x-20=0\)
\(x=10\)
b) \(6x^2+13x+5=0\)
\(6x^2+10x+3x+5=0\)
\(2x\left(3x+5\right)+\left(3x+5\right)=0\)
\(\left(3x+5\right)\left(2x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+5=0\\2x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-5}{3}\\x=\frac{-1}{2}\end{cases}}}\)
Bài 1:
a: \(3x-6y=3\cdot x-3\cdot2y=3\left(x-2y\right)\)
b: \(14x^2y-21xy^2+28x^2y^2\)
\(=7xy\cdot2x-7xy\cdot3y+7xy\cdot4xy\)
\(=7xy\left(2x-3y+4xy\right)\)
c: \(10x\left(x-y\right)-8y\cdot\left(y-x\right)\)
\(=10x\left(x-y\right)+8y\left(x-y\right)\)
\(=\left(x-y\right)\left(10x+8y\right)\)
\(=\left(2\cdot5x+2\cdot4y\right)\left(x-y\right)\)
\(=2\left(5x+4y\right)\left(x-y\right)\)
bài 2:
a: Đề thiếu vế phải rồi bạn
b: \(x^3-13x=0\)
=>\(x\left(x^2-13\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=13\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=0\\x=\pm\sqrt{13}\end{matrix}\right.\)
Bài 1:
a, $3x-6y$
$=3(x-2y)$
b, $14x^2y-21xy^2+28x^2y^2$
$=7xy(2x-3y+4xy)$
c, $10x(x-y)-8y(y-x)$
$=10x(x-y)-8y[-(x-y)]$
$=10x(x-y)+8y(x-y)$
$=(x-y)(10x+8y)$
$=2(x-y)(5x+4y)$
Bài 2:
a, Đề thiếu rồi bạn nhé.
b, \(x^3-13x=0\)
\(\Rightarrow x\left(x^2-13\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=13\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{13}\\x=-\sqrt{13}\end{matrix}\right.\)