Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)
= \(\left[\left(x+y+z\right)-\left(x+y\right)\right]^2\)
= \(z^2\)
Ta có:(x + y + z)2 - 2(x + y + z) (x + y) + (x + y)2
=[(x+y+z)-(x+y)]2=z2
sách hay cái zì bạn?nếu đề thi hay bài tập bạn chụp rùi gửi mail(lethihuong34567890@gmail.com) cho mk đc hơm? còn nếu sách thì chỉ cần chụp bìa dc gùi
Điều kiện:
\(x-1\ne0\Rightarrow x\ne1\)
\(x^3+x\ne0\Leftrightarrow x\ne0\)
a) https://hoc24.vn/hoi-dap/question/398481.html
b)
a2 + b2 + c2 = ab + ac + bc
<=> 2a2 + 2b2 + 2c2 = 2ac + 2ab + 2bc
<=> (a2 - 2ac + c2) + (a2 - 2ab + b2) + (b2 - 2bc + c2) = 0
<=> (a - b)2 + (a - c)2 + (b - c)2 = 0
<=> a = b = c
1. Ta có:
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
=> \(a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)
=> \(a^2y^2+b^2x^2=2axby\)
=> \(a^2y^2+b^2x^2-2axby=0\)
=> \(a^2y^2+b^2x^2-2aybx=0\)
=> \(\left(ay-bx\right)^2=0\)
Mà \(\left(ay-bx\right)^2\ge0\)
Dấu '' = '' xảy ra \(\Leftrightarrow\) \(ay-bx=0\)
\(\Leftrightarrow\) \(ay=bx\)
\(\Leftrightarrow\) \(\dfrac{a}{x}=\dfrac{b}{y}\)
2. Ta có:
\(a^2+b^2+c^2=ab+bc+ac\)
=> \(2a^2+2b^2+2c^2=2ab+2bc+2ac\)
=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
=> \(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
=> \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
Ta thấy:
\(\left(a-b\right)^2\ge0\); \(\left(a-c\right)^2\ge0\); \(\left(b-c\right)^2\ge0\)
=> \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\)
Mà \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
Dấu '' = '' xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\)
\(\Leftrightarrow\) a = b = c
1, (x+y+4). (x+y-4)=(x+y)2-42=(x+y)2-16
2, (x-y+6). (x+y-6)=(x+y)2-62=(x+y)2-36
3, (x+2y+3z). (2y+3z-x)=(2y+3z)2-x2
\(1.\left[\left(x+y\right)-4\right]\left[\left(x+y\right)+4\right]=\left(x+y\right)^2-4^2\)
a)tam giác BHA có BI là phân giác(góc ABI=góc HBI) nên \(\dfrac{AI}{IH}=\dfrac{AB}{BH}\Rightarrow AI\cdot BH=AB\cdot IH\)
b)xét tam giác BHA và tam giác BAC có:
góc ABC chung
góc BHA=góc BAC=90 độ
\(\Rightarrow\Delta BHA\infty\Delta BAC\left(g.g\right)\\ \Rightarrow\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow AB^2=BH\cdot BC\)
c)ta có:
theo câu a) \(\dfrac{AI}{IH}=\dfrac{AB}{BH}\Rightarrow\dfrac{IH}{AI}=\dfrac{BH}{AB}\left(1\right)\)
theo câu b) \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)
ta lại có BD là phân giác góc ABC nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{AD}{DC}=\dfrac{BH}{AB}\)(2)
từ (1) và (2)\(\Rightarrow\dfrac{IH}{IA}=\dfrac{AD}{DC}\left(=\dfrac{BH}{AB}\right)\)
\(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
Thay x - y = 7
\(\Rightarrow A=49+14+37=100\)
Vậy A = 100 khi x - y = 7