K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2020

(-8+x^2)^5=1

<=>-8+x^2=1

<=>x^2=9

<=>x=3 hoặc -3

Vậy x=3 hoặc -3

22 tháng 8 2020

Ta có: \(\left(-8+x^2\right)\left(-8+x^2\right)\left(-8+x^2\right)\left(-8+x^2\right)\left(-8+x^2\right)=1\)

    \(\Leftrightarrow\left(-8+x^2\right)^5=1\)

    \(\Leftrightarrow x^2-8=\pm1\)

 + \(x^2-8=1\)\(\Leftrightarrow\)\(x^2=9\)\(\Leftrightarrow\)\(x=\pm3\)

 + \(x^2-8=-1\)\(\Leftrightarrow\)\(x^2=7\)\(\Leftrightarrow\)\(x=\pm\sqrt{7}\) 

Vậy \(S=\left\{-3,-\sqrt{7},\sqrt{7},3\right\}\)

15 tháng 3 2020

i) (x - 1)(5x + 3) = (3x - 8)(x - 1)

<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8

<=> 5x2 - 2x - 3 = 3x2 - 11x + 8

<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0

<=> 2x2 + 9x - 11 = 0

<=> 2x2 + 11x - 2x - 11 = 0

<=> x(2x + 11) - (2x + 11) = 0

<=> (x - 1)(2x + 11) = 0

<=> x - 1 = 0 hoặc 2x + 11 = 0

<=> x = 0 hoặc x = -11/2

m) 2x(x - 1) = x2 - 1

<=> 2x2 - 2x = x2 - 1

<=> 2x2 - 2x - x2 + 1 = 0

<=> x2 - 2x + 1 = 0

<=> (x - 1)2 = 0

<=> x - 1 = 0

<=> x = 1

n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)

<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x

<=> -31x + 22 - 3x2 = 16x - 15x2 - 4

<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0

<=> 47x - 18 - 12x2 = 0

<=> -12x2 + 47x - 26 = 0

<=> 12x2 - 47x + 26 = 0

<=> 12x2 - 8x - 39x + 26 = 0

<=> 4x(3x - 2) - 13(3x - 2) = 0

<=> (4x - 13)(3x - 2) = 0

<=> 4x - 13 = 0 hoặc 3x - 2 = 0

<=> x = 13/4 hoặc x = 2/3

15 tháng 3 2020

i) (x - 1)(5x + 3) = (3x - 8)(x - 1)

<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8

<=> 5x2 - 2x - 3 = 3x2 - 11x + 8

<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0

<=> 2x2 + 9x - 11 = 0

<=> 2x2 + 11x - 2x - 11 = 0

<=> x(2x + 11) - (2x + 11) = 0

<=> (x - 1)(2x + 11) = 0

<=> x - 1 = 0 hoặc 2x + 11 = 0

<=> x = 0 hoặc x = -11/2

m) 2x(x - 1) = x2 - 1

<=> 2x2 - 2x = x2 - 1

<=> 2x2 - 2x - x2 + 1 = 0

<=> x2 - 2x + 1 = 0

<=> (x - 1)2 = 0

<=> x - 1 = 0

<=> x = 1

n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)

<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x

<=> -31x + 22 - 3x2 = 16x - 15x2 - 4

<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0

<=> 47x - 18 - 12x2 = 0

<=> -12x2 + 47x - 26 = 0

<=> 12x2 - 47x + 26 = 0

<=> 12x2 - 8x - 39x + 26 = 0

<=> 4x(3x - 2) - 13(3x - 2) = 0

<=> (4x - 13)(3x - 2) = 0

<=> 4x - 13 = 0 hoặc 3x - 2 = 0

<=> x = 13/4 hoặc x = 2/3

30 tháng 5 2017

a) 3(22+1)(24+1)(28+1)(216+1)

=(2+1)(2-1)(22+1)(24+1)(28+1)(216+1)

=(22-1)(22+1)(24+1)(28+1)(216+1)

=(24-1)(24+1)(28+1)(216+1)

.......

=(216-1)(216+1)=232-1

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

a)

\((x+2)(x+4)(x+6)(x+8)+16\)

\(=[(x+2)(x+8)][(x+4)(x+6)]+16\)

\(=(x^2+10x+16)(x^2+10x+24)+16\)

\(=a(a+8)+16\) (Đặt \(x^2+10x+16=a\) )

\(=a^2+2.4.a+4^2=(a+4)^2\)

\(=(x^2+10x+16+4)^2\)

\(=(x^2+10x+20)^2\)

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

b) \((x^2+x)(x^2+x+1)-6\)

\(=(x^2+x)^2+(x^2+x)-6\)

\(=(x^2+x)^2-2(x^2+x)+3(x^2+x)-6\)

\(=(x^2+x)(x^2+x-2)+3(x^2+x-2)\)

\(=(x^2+x-2)(x^2+x+3)\)

\(=(x^2-x+2x-2)(x^2+x+3)\)

\(=[x(x-1)+2(x-1)](x^2+x+3)\)

\(=(x-1)(x+2)(x^2+x+3)\)

c)

\((x^2-4x)^2-8(x^2-4x)+15\)

\(=(x^2-4x)^2-3(x^2-4x)-5(x^2-4x)+15\)

\(=(x^2-4x)(x^2-4x-3)-5(x^2-4x-3)\)

\(=(x^2-4x-3)(x^2-4x-5)\)

\(=(x^2-4x-3)(x^2+x-5x-5)\)

\(=(x^2-4x-3)[x(x+1)-5(x+1)]=(x^2-4x-3)(x+1)(x-5)\)

14 tháng 10 2016

Mong các bạn và thầy cô giải giùm ạ!

14 tháng 10 2017

Đặt \(t=\left(x+\frac{1}{x}\right)^2\)\(\Rightarrow\)\(x^2+\frac{1}{x^2}=t-2\)điều kiện t>=0,x # 0

Phương trình trở thành

8t +4(t-2)- 4(t-2)2t =(x+4)2

8t + 4t2 - 16t + 16 -4t3 + 16t2 - 16t=(x+4)2

-4t+ 20t-24t=x2 +8x

-4t(t2 -5t +6)=x(x+8)

-4t(t-2)(t-3)=x(x+8)

Mình chỉ giúp dược tới đó

16 tháng 12 2016

A=ba số hạng đầu

\(A=\frac{1}{x}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+6}=\frac{1}{x}-\frac{1}{x+6}\\ \)

B=3 số hạng tiếp theo

\(2B=\frac{1}{x+6}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+10}+\frac{1}{x+10}=\frac{1}{x+6}\)

\(A+B=\frac{1}{x}-\frac{1}{x+6}+\frac{1}{2\left(x+6\right)}=\frac{1}{x}-\frac{1}{2\left(x+6\right)}=\frac{12+x}{2x\left(x+6\right)}\)

26 tháng 6 2018

a) Qui đồng rồi khử mẫu ta được:

   3(3x+2)-(3x+1)=2x.6+5.2

<=> 9x+6-3x-1 = 12x+10

<=> 9x-3x-12x  = 10-6+1

<=> -6x            = 5

<=> x               = -5/6

Vậy ....

b) ĐKXĐ: \(x\ne\pm2\)

Qui đồng rồi khử mẫu ta được:

   (x+1)(x+2)+(x-1)(x-2) = 2(x2+2)

<=> x2+3x+2+x2-3x+2 = 2x2+4

<=> x2+x2-2x2+3x-3x = 4-2-2

<=> 0x             = 0

<=> x vô số nghiệm

Vậy x vô số nghiệm với x khác 2 và x khác -2

c) \(\left(2x+3\right)\left(\frac{3x+7}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\) (ĐKXĐ:x khắc 2/7)

\(\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)-\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)=0\)

\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left[\left(2x+3\right)-\left(x-5\right)\right]=0\)

\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}+1=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}=-1\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x+8=-1\left(2-7x\right)\\x=0-8\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x+8=-2+7x\\x=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}-4x=-10\\x=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}}\) (nhận)

Vậy ...... 

d) (x+1)2-4(x2-2x+1) = 0

<=> x2+2x+1-4x2+8x-4 = 0

<=> -3x2+10x-3 = 0

giải phương trình