K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

\(F=3\sqrt{5}+\sqrt{30}-2\sqrt{15}-2\sqrt{10}-3\sqrt{5}-6\)

\(=\sqrt{30}-2\sqrt{15}-2\sqrt{10}-6\)

6 tháng 11 2021

Gọi:

AB là chiều cao tháp

AC là khoảng cách từ chân tháp đến thuyền

Góc C là góc hạ

\(tanC=\dfrac{AB}{AC}\Rightarrow AC=AB:tanC=28:tan20^0\simeq76,9\left(m\right)\)

11 tháng 12 2023

Gọi AH là độ cao của ngọn hải đăng, BC là độ dài quãng đường con thuyền đi được giữa hai lần quan sát.

Theo đề, ta có: AH=120m; \(\widehat{B}=20^0;\widehat{C}=30^0\)

Xét ΔAHB vuông tại H có \(tanB=\dfrac{AH}{HB}\)

=>\(HB=\dfrac{120}{tan20}\simeq329,7\left(m\right)\)

Xét ΔAHC vuông tại H có \(tanC=\dfrac{AH}{HC}\)

=>\(\dfrac{120}{HC}=tan30\)

=>\(HC=\dfrac{120}{tan30}\simeq207,85\left(m\right)\)

BC=BH+CH=329,7+207,85=537,55(m)

Vậy: Con thuyền đã được 537,55m giữa hai lần quan sát

loading...

3 tháng 10 2021

Đặt tam giác ABC vuông tại A với B là đỉnh tháp

Áp dụng tslg trong tam giác ABC vuông tại A:

\(tanC=\dfrac{AB}{AC}\)

\(\Rightarrow tan30^0=\dfrac{26}{AC}\)

\(\Rightarrow AC=\dfrac{26}{tan30^0}=26\sqrt{3}\left(m\right)\)

10 tháng 8 2023

Ta có :

ABC=90°60°=30°,ACB=90°+30°=120°CAB=180°30°120°=30°ABC=CAB∠���=90°−60°=30°,∠���=90°+30°=120°⇒∠���=180°−30°−120°=30°⇒∠���=∠���

 

ΔCAB⇒���� cân tại CAC=BC=100m⇒��=��=100�

Ta có:h=AC.sin30°=100.12=50m

8 tháng 10 2021

Xét tam giác ADC có:

\(\widehat{ACB}=\widehat{ADC}+\widehat{DAC}\)(tính chất góc ngoài)

\(\Rightarrow\widehat{DAC}=\widehat{ACB}-\widehat{ACB}=60^0-30^0=30^0\)

\(\Rightarrow\widehat{DAC}=\widehat{ADC}=30^0\)

=> Tam giác ADC cân tại C

=> AC=DC=20m

Áp dụng tslg trong tam giác ABC vuông tại B:

\(AB=sinC.AC=sin60^0.20=10\sqrt{3}\left(m\right)\)

\(BC=cosC.AC=cos60^0.20=10\left(m\right)\)