Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để M có giá trị nhỏ nhất thì
2012-2011:(2010-x)=1
Suy ra : 2011 : (2010-x) =2011
2010 -x = 1
x= 2009
\(697:\left[\left(15x+364\right):x\right]=17\)
<=> \(\left(15x+364\right):x=41\)
<=> \(15x+364-41x=0\)
<=> \(-26x+364=0\)
<=> \(-26x=-364\)
<=> \(x=14\)
\(92.4-27=\left(x+350\right):x+315\)
<=> \(\left(x+350\right):x+315=341\)
<=> \(\left(x+350\right):x=26\)
<=> \(x+350-26x=0\)
<=> \(-25x=-350\)
<=> \(x=14\)
học tốt
Bài 1:
a)697:[(15x+364):x]=17 b)\(92.4-27=\left(x+350\right):x+315\)
(15x+364):x=697:17 \(\left(x+350\right):x+315=341\)
(15x+364):x=41 \(\left(x+350\right):x=26\)
15x+364=41x \(x+350=26x\)
\(41x-15x=364\) \(26x-x=350\)
\(26x=364\) \(25x=350\)
\(x=364:26\) \(x=350:25\)
\(x=14\) \(x=14\)
bài 2:
gọi đó số chia 15 thì dư là:
\(37-15=22\)
suy ra ta nói 1 số chia 60 dư 37nhưng chia 15 dư 22
bài 3:
lấy 166 và 51 trừ đi 5
tìm ước của 161 và 46
161=x.23
46=x.23
ƯCLN(46;161)=Ư(46;161)={1;23}
ta chọn 23 vì số chia không nhỏ hơn số dư
de 1996xy chia het cho 5 thi y phai bang 0 hoac 5 . de 1996xy chia het cho 2 thi y phai bang 0.ta co 1996x0 chia het cho 9 khi x ={2 ,11,...} .do x la so co mot chu so nen x=2.vay so thoa man de bai la 199620
do 2009/2010<1,2010/2011<1,2011/2012<1,2012/2013<1suy ra 2009/2010+2010/2011+2011/2012+2012/2013<4
Bài 1 :
Ta có :
\(B=\frac{2010+2011}{2011+2012}=\frac{2010}{2011+2012}+\frac{2011}{2011+2012}\)
Vì :
\(\frac{2010}{2011}>\frac{2010}{2011+2012}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012}\)
Nên : \(\frac{2010}{2011}+\frac{2011}{2012}>\frac{2010+2011}{2011+2012}\)
Vậy \(A>B\)
Bài 2 :
\(\frac{n+1}{n-1}=\frac{n-1+2}{n-1}=\frac{n-1}{n-1}+\frac{2}{n-1}=1+\frac{2}{n-1}\)
\(\Rightarrow\)\(2⋮\left(n-1\right)\)
\(\Rightarrow\)\(\left(n-1\right)\inƯ\left(2\right)\)
Mà \(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\)
Suy ra :
\(n-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(n\) | \(2\) | \(0\) | \(3\) | \(-1\) |
Vì n là số tự nhiên nên \(n\in\left\{0;2;3\right\}\)
Vậy \(n\in\left\{0;2;3\right\}\)
Bài 1 :
Đề câu a) có thêm \(n\inℤ\)
a) \(A=n^2+n+3=n\left(n+1\right)+2+1\)
Ta thấy : \(n\left(n+1\right)⋮2,2⋮2\)
\(\Rightarrow n\left(n+1\right)+2⋮2\)
\(\Rightarrow n\left(n+1\right)+2+1⋮̸2\)
hay \(A⋮̸2\) ( đpcm )
b) Ta có : \(\left|2x-4\right|\ge0\forall x\)
\(\Rightarrow-\left|2x-4\right|\le0\forall x\)
\(\Rightarrow18-\left|2x-4\right|\le18\forall x\)
hay \(A\le18\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|2x-4\right|=0\Leftrightarrow x=2\)
Vậy max \(A=18\) khi \(x=2\)
b1 :
a,n^2 + n + 3
= n(n + 1) + 3
n(n+1) là tích của 2 stn liên tiếp => n(n+1) chia hết cho 2
=> n(n+1) + 3 không chia hết cho 2
b, A = 18 - |2x - 4|
|2x - 4| > 0 => - |2x - 4| < 0
=> 18 - |2x - 4| < 18
=> A < 18
xét A = 18 khi |2x - 4| = 0
=> 2x - 4 = 0
=> x = 2
c, A = |5 - x| + 2015
|5 - x| > 0
=> |5 - x| + 2015 > 2015
=> A > 2015
xét A = 2015 khi |5 - x| = 0
=> 5 - x = 0 => x = 5
1: \(C=2010\cdot2012\)
\(C=\left(2011-1\right)\left(2011+1\right)\)
\(C=2011\left(2011+1\right)-\left(2011+1\right)\)
\(C=2011\cdot2011+2011-2011-1=2011\cdot2011-1\)
Mà \(D=2011\cdot2011\)
\(\Rightarrow C< D\)
2: Chia 1 số cho 60 thì dư 37.Vậy chia số đó cho 15 thì được số dư là 7
3: Chú thích: giá trị nhỏ nhất=GTNN
Để M có GTNN
thì \(2012-\frac{2011}{2012-x}\) có GTNN
Nên \(\frac{2011}{2012-x}\)có GTLN
nên 2012-x>0 và x thuộc N
Suy ra: 2012-x=1
Suy ra: x=2011
Vậy, M có GTNN là 2011 khi x=2011