\(\sqrt{x^2+4x+4}=2\) 

b) \...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2023

Bài 3:

\(A=\dfrac{2\sqrt{x}-4}{3\sqrt{x}-4}+\dfrac{x+22\sqrt{x}-32}{3x-10\sqrt{x}+8}+\dfrac{4+2\sqrt{x}}{\sqrt{x}-2}\)

\(=\dfrac{2\sqrt{x}-4}{3\sqrt{x}-4}+\dfrac{x+22\sqrt{x}-32}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}+4}{\sqrt{x}-2}\)

\(=\dfrac{\left(2\sqrt{x}-4\right)\left(\sqrt{x}-2\right)+x+22\sqrt{x}-32+\left(2\sqrt{x}+4\right)\left(3\sqrt{x}-4\right)}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2x-8\sqrt{x}+8+x+22\sqrt{x}-32+6x-8\sqrt{x}+12\sqrt{x}-16}{\left(3\sqrt{x}-4\right)\cdot\left(\sqrt{x}-2\right)}\)

\(=\dfrac{9x+18\sqrt{x}-40}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{9x-12\sqrt{x}+30\sqrt{x}-40}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(3\sqrt{x}-4\right)\left(3\sqrt{x}+10\right)}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3\sqrt{x}+10}{\sqrt{x}-2}\)

Bài 2:

b: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x+\dfrac{3}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\3-x=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=3\\y=0\end{matrix}\right.\)

=>A(3;0)

Tọa độ B là: 

\(\left\{{}\begin{matrix}x=0\\y=-\dfrac{1}{2}x+\dfrac{3}{2}=-\dfrac{1}{2}\cdot0+\dfrac{3}{2}=1,5\end{matrix}\right.\)

=>B(0;1,5)

\(OA=\sqrt{\left(3-0\right)^2+\left(0-0\right)^2}=\sqrt{3^2+0^2}=3\)

\(OB=\sqrt{\left(0-0\right)^2+\left(1,5-0\right)^2}=1,5\)

Ox\(\perp\)Oy nên OA\(\perp\)OB

=>ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=2.25\)

Bài 1:

a: ĐKXĐ: \(x\in R\)

\(\sqrt{x^2+4x+4}=2\)

=>\(\sqrt{\left(x+2\right)^2}=2\)

=>|x+2|=2

=>\(\left[{}\begin{matrix}x+2=2\\x+2=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

b: ĐKXĐ: x>=2

\(\sqrt{4x-8}-7\cdot\sqrt{\dfrac{x-2}{49}}=5\)

=>\(2\sqrt{x-2}-7\cdot\dfrac{\sqrt{x-2}}{7}=5\)

=>\(\sqrt{x-2}=5\)

=>x-2=25

=>x=27(nhận)

a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)

b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)

\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)

c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)

\(=\sqrt{x}+2-\sqrt{x}-2=0\)

1 cho biểu thức a rút gọn P P=\(\)( \(2-\dfrac{2\sqrt{x}}{\sqrt{x-3}}+\dfrac{5\left(\sqrt{x+4}\right)}{x-9} \)) :( 1-\(\dfrac{5}{\sqrt{x+3}}\)) b tìm x để P<-\(\dfrac{1}{2}\) c tìm MaxQ= P(x\(\sqrt{x}-8x+15\sqrt{x}\)) 2 cho biểu thức A=\(\dfrac{\sqrt{x}+2}{\sqrt{x+}3}-\dfrac{5}{x+\sqrt{x-}6}+\dfrac{1}{2-\sqrt{x}}\) a rútA b tìm x để \(\sqrt{A}\)<A c tìm x thuộc Z để A thuộc Z 3 cho d y=( a-1) x+1 a xác định hệ số a để ( d) đi A (2;5) b xác...
Đọc tiếp

1 cho biểu thức

a rút gọn P

P=\(\)( \(2-\dfrac{2\sqrt{x}}{\sqrt{x-3}}+\dfrac{5\left(\sqrt{x+4}\right)}{x-9} \)) :( 1-\(\dfrac{5}{\sqrt{x+3}}\))

b tìm x để P<-\(\dfrac{1}{2}\)

c tìm MaxQ= P(x\(\sqrt{x}-8x+15\sqrt{x}\))

2 cho biểu thức

A=\(\dfrac{\sqrt{x}+2}{\sqrt{x+}3}-\dfrac{5}{x+\sqrt{x-}6}+\dfrac{1}{2-\sqrt{x}}\)

a rútA

b tìm x để \(\sqrt{A}\)<A

c tìm x thuộc Z để A thuộc Z

3 cho d y=( a-1) x+1

a xác định hệ số a để ( d) đi A (2;5)

b xác định a để (d) cắt trục hoành tại điểm có hoành độ là-2

c vẽ đồ thị tìm được ở câu a,b trên cùng 1 tọa độ tìm giao điểm của B tại đường thẳng này

d tính diện tích tam giác có đỉnh là góc B và 2 đỉnh còm lại giao điểm của 2 đồ thị với trục hoành

4 giải hệ phương trình

a \(\left\{{}\begin{matrix}\dfrac{2}{x-1}+\dfrac{1}{Y+1}=7\\\\\dfrac{5}{x-1}-\dfrac{2}{y+1}=4\\\end{matrix}\right.\)

b \(\dfrac{3}{\sqrt{x-1}-1}+\dfrac{1}{\sqrt{y+1}-x}=1\)

\(\dfrac{-1}{\sqrt{x+1}-1}-\dfrac{2}{\sqrt{y+1}-2}=3\)

c \(\left\{{}\begin{matrix}\dfrac{x-\dfrac{x-1}{2}+y+3}{2}\\\\3x-2y=4\\\end{matrix}\right.\)

giúp mình giải bài này với ạ mình đang cần gấp lắm ạ

3
31 tháng 1 2019

Bạn đăng mỗi lần 1 câu thôi nhé!

1 tháng 2 2019

giúp mình giải bài này với ạ mình đang cần gấp lắm ạkhocroi

Bài 1 :

\(\dfrac{x+4}{x^2-9}-\dfrac{2}{x+3}=\dfrac{4x}{3x-x^2}\) ( ĐK : \(\left\{{}\begin{matrix}x\ne0\\x\ne-3\\x\ne3\end{matrix}\right.\) )

\(\Leftrightarrow\dfrac{x\left(x+4\right)}{x\left(x-3\right)\left(x+3\right)}-\dfrac{2x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{-4x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow x\left(x+4\right)-2x\left(x-3\right)=-4x\left(x+3\right)\)

\(\Leftrightarrow x^2+4x-2x^2+6x+4x^2+12x=0\)

\(\Leftrightarrow3x^2+22x=0\)

\(\Leftrightarrow x\left(3x+22\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+22=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=-\dfrac{22}{3}\left(N\right)\end{matrix}\right.\)

Vậy \(x=-\dfrac{22}{3}\)

Bài 2 : \(x\left(x+1\right)\left(x^2+x+1\right)=42\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+1\right)=42\)

Đặt \(x^2+x=t\) . Phương trình trở thành :

\(t\left(t+1\right)=42\)

\(\Leftrightarrow t^2+t-42=0\)

\(\Leftrightarrow\left(t-6\right)\left(t+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t-6=0\\t+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=6\\t=-7\end{matrix}\right.\)

Với \(t=6\)

\(\Leftrightarrow x^2+x=6\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Với \(t=-7\)

\(\Leftrightarrow x^2+x=-7\)

\(\Leftrightarrow x^2+x+7=0\)

---> Phương trình vô nghiệm !

Vậy \(x=-3;x=2\)

Bài 1: Thực hiện phép tính a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\) b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\) c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\) d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\) Bài 2: Rút gọn biểu thức sau \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\) Bài 3: Cho biểu thức...
Đọc tiếp

Bài 1: Thực hiện phép tính

a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\)

b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\)

c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\)

d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\)

Bài 2: Rút gọn biểu thức sau

\(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\)

Bài 3: Cho biểu thức sau

A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-a}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{4-x}{2\sqrt{x}}\)với \(x>0\)\(x\ne4\)

a) Rút gọn A b) Tìm x để A=-3

Bài 4: Rút gọn biểu thức sau

A=\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{1+\sqrt{x}}\right):\dfrac{1}{x-1}\) với \(x\ge0\)\(x\ne1\)

Bài 5: Cho biểu thức

C= \(\left(\dfrac{2+\sqrt{a}}{2-\sqrt{a}}-\dfrac{2-\sqrt{a}}{2+\sqrt{a}}-\dfrac{4a}{a-4}\right):\left(\dfrac{2}{2-\sqrt{a}}-\dfrac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\)

a) Rút gọn C b) Timg giá trị của a để C>0 c) Tìm giá trị của a để C=-1

Bài 6: Giải phương trình

a) \(2\sqrt{3}-\sqrt{4+x^2}=0\\\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

c) \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18x}=0\)

d) \(\sqrt{4\left(x+2\right)^2}=8\)

1
29 tháng 11 2022

Bài 6:

a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)

=>x^2+4=12

=>x^2=8

=>\(x=\pm2\sqrt{2}\)

b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>x+1=1

=>x=0

c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)

=>\(\sqrt{2x}=2\)

=>2x=4

=>x=2

d: \(\Leftrightarrow2\left|x+2\right|=8\)

=>x+2=4 hoặcx+2=-4

=>x=-6 hoặc x=2

16 tháng 6 2017

a, \(\dfrac{b}{\left(a-4\right)^2}.\sqrt{\dfrac{\left(a-4\right)^4}{b^2}}=\dfrac{b}{\left(a-4\right)^2}.\dfrac{\left(a-4\right)^2}{b}=1\)

b, Đặt \(B=\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)

\(\sqrt{x}=a,\sqrt{y}=b\)

Ta có: \(B=\dfrac{a^3-b^3}{a-b}=\dfrac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a-b}=a^2+ab+b^2\)

\(\Rightarrow B=x+\sqrt{xy}+y\)

Vậy...

c, \(\dfrac{a}{\left(b-2\right)^2}.\sqrt{\dfrac{\left(b-2\right)^4}{a^2}}=\dfrac{a}{\left(b-2\right)^2}.\dfrac{\left(b-2\right)^2}{a}=1\)

d, \(2x+\dfrac{\sqrt{1-6x+9x^2}}{3x-1}=2x+\dfrac{\sqrt{\left(3x-1\right)^2}}{3x-1}=2x+1\)

16 tháng 6 2017

a:b(a−4)2.√(a−4)4b2(b>0;a≠4)b(a−4)2.(a−4)4b2(b>0;a≠4)

= \(\dfrac{b}{\left(a-4\right)}.\dfrac{\sqrt{\left[\left(a-4\right)^2\right]^2}}{\sqrt{b^2}}\)

=\(\dfrac{b}{\left(a-4\right)^2}.\dfrac{\left(a-4\right)^2}{b}\)

= 1 ( nhân tử với tử mẫu với mẫu rồi rút gọn)

b:x√x−y√y√x−√y(x≥0;y≥0;x≠0)xx−yyx−y(x≥0;y≥0;x≠0)

=\(\dfrac{\sqrt{x^3}-\sqrt{y^3}}{\sqrt{x}-\sqrt{y}}\)

=\(\dfrac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\sqrt{x}-\sqrt{y}}\)

=\(\dfrac{\left(\sqrt{x}-\sqrt{y}\right).\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}\)(áp dụng hằng đẳng thức )

= (x+\(\sqrt{xy}\)+y)

c:a(b−2)2.√(b−2)4a2(a>0;b≠2)a(b−2)2.(b−2)4a2(a>0;b≠2)

Tương tự câu a

d:x(y−3)2.√(y−3)2x2(x>0;y≠3)x(y−3)2.(y−3)2x2(x>0;y≠3)

tương tự câu a

e:2x +√1−6x+9x23x−1

= \(2x+\dfrac{\sqrt{\left(3x\right)^2-6x+1}}{3x-1}\)

= 2x+\(\dfrac{\sqrt{\left(3x-1\right)^2}}{3x-1}\)(hằng đẳng thức)

=2x+\(\dfrac{3x-1}{3x-1}\)

=2x+1

13 tháng 8 2018

Tớ làm nốt nè :3

\(1b.3\sqrt{2}+4\sqrt{8}-\sqrt{18}=3\sqrt{2}+8\sqrt{2}-3\sqrt{2}=8\sqrt{2}\)

\(c.\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}=\dfrac{2-\sqrt{3}+2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=4\)

\(2a.\sqrt{4x^2-4x+1}=3\)
\(\Leftrightarrow4x^2-4x+1=9\)

\(\Leftrightarrow4x^2+4x-8x-8=0\)

\(\Leftrightarrow4\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

\(b.\sqrt{4x-4}-\sqrt{9x-9}+5\sqrt{x-1}=7\left(x\ge1\right)\)

\(\Leftrightarrow2\sqrt{x-1}-3\sqrt{x-1}+5\sqrt{x-1}=7\)

\(\Leftrightarrow4\sqrt{x-1}=7\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{7}{4}\)

\(\Leftrightarrow x=\dfrac{65}{16}\)

c. Sai đề.

13 tháng 8 2018

Trưa hoặc tối t giúp c nhé

Bài 3:

a: \(=\left(4\sqrt{2}-6\sqrt{2}\right)\cdot\dfrac{\sqrt{2}}{2}=-2\sqrt{2}\cdot\dfrac{\sqrt{2}}{2}=-2\)

b: \(=\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-2\left(\sqrt{6}-1\right)\)

\(=\sqrt{6}-2\sqrt{6}+2=2-\sqrt{6}\)

a: \(=-4+2\sqrt{5}-\sqrt{5}+2+\sqrt{5}=2\sqrt{5}-2\)

b: \(B=\dfrac{2\sqrt{x}+4+6\sqrt{x}-3-2\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}}{6\sqrt{x}+4}\)

\(=\dfrac{\left(6\sqrt{x}+1\right)\cdot\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\left(6\sqrt{x}+4\right)}\)