K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Giải các pt sau:

a) \(x^4-5x^2+4=0\)

b) \(\frac{150}{x}+\frac{150}{x+25}=5\)

c) \(3x^2-x-4=0\)

d) \(\frac{100}{x}-\frac{100}{x+10}=\frac{1}{2}\)

Bài 2: Cho (P): y=\(\frac{-x^2}{4}\)

a) Vẽ (P)

b) Tìm M \(\in\) (P) sao cho M có hoành độ bằng \(\frac{1}{3}\) tung độ

Bài 3: Cho pt (ẩn x): \(x^2-2mx+2m-2=0\) (1)

a) Chứng minh rằng pt (1) luôn có 2 nghiệm phân biệt với mọi m

b) Tìm m để pt (1) có 2 nghiệm \(x_1;x_2\) thỏa \(x^{_13}-x_2^3=4\left(x_1^2-x_2^2\right)\)

Bài 4: Cho \(\Delta\)ABC (AB<AC) có 3 góc nhọn nội tiếp (O). Các đường cao BE; CF cắt nhau tại H

a) CMR: BCEF nội tiếp và xác định tâm M của đường tròn ngoại tiếp tứ giác BCEF

b) Hai đường thẳng EF và BC cắt nhau tại S. C/m: SE.SF=SC.SB

c) Vẽ đường kính AK. Gọi I là trung điểm AH. CMR: BHCK là hình bình hành

Bài 5: a) Vẽ (P): y=\(-x^2\)

b) Tìm những điểm trên (P) có khoảng cách đến trục tung là 2

Bài 6: Cho pt (ẩn x): \(x^2-4x+m-2=0\) (1)

a) Tìm m để pt (1) có nghiệm

b) Tìm m để pt (1) có 2 nghiệm thỏa mãn \(3x_1-x_2=8\)

Bài 7: Hai giá sách trong một thư viện có tất cả 357 cuốn. Sau khi chuyển 28 cuốn sách từ giá thứ nhất sang giá thứ hai thì số cuốn sách ở giá thứ nhất bằng \(\frac{1}{2}\) số cuốn sách ở giá thứ hai. Tìm số cuốn sách ban đầu của mỗi giá

Bài 8: Cho nửa (O); bán kính R; đường kính AB. Gọi C là điểm chính giữa cung AB; M \(\in\) cung nhỏ. Kẻ CI vuông góc AM tại I; CI cắt AB tại D

a) CMR: ACIO nội tiếp. Tính góc OID

b) CMR: OI là phân giác góc COM

c) Gọi N là giao điểm AM và OC. CMR: AO.AB=AN.AM

d) Khi AM qua trung điểm K của BC. Tính \(\frac{MA}{MB};AM;BM\) theo R

1
6 tháng 3 2019

Bài 1 :

a) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^4-x^2-4x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\\x=-2\end{matrix}\right.\)

Vậy....

b) \(\dfrac{150}{x}+\dfrac{150}{x+25}=5\)ĐKXĐ : \(x\ne0;-25\)

\(\Leftrightarrow150\left(\dfrac{1}{x}+\dfrac{1}{x+25}\right)=5\)

\(\Leftrightarrow\dfrac{x+25}{x\left(x+25\right)}+\dfrac{x}{x\left(x+25\right)}=\dfrac{1}{30}\)

\(\Leftrightarrow\dfrac{2x+25}{x\left(x+25\right)}=\dfrac{1}{30}\)

\(\Leftrightarrow30\left(2x+25\right)=x\left(x+25\right)\)

\(\Leftrightarrow60x+750=x^2+25x\)

\(\Leftrightarrow x^2-35x-750=0\)

\(\Leftrightarrow x^2-50x+15x-750=0\)

\(\Leftrightarrow x\left(x-50\right)+15\left(x-50\right)=0\)

\(\Leftrightarrow\left(x-50\right)\left(x+15\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=50\\x=-15\end{matrix}\right.\)( thỏa mãn ĐKXĐ )

c) \(3x^2-x-4=0\)

\(\Leftrightarrow3x^2+3x-4x-4=0\)

\(\Leftrightarrow3x\left(x+1\right)-4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{4}{3}\end{matrix}\right.\)

Vậy....

d) \(\dfrac{100}{x}-\dfrac{100}{x+10}=\dfrac{1}{2}\)ĐKXĐ : \(x\ne0;-10\)

\(\Leftrightarrow100\left(\dfrac{1}{x}-\dfrac{1}{x+10}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{x+10}{x\left(x+10\right)}-\dfrac{x}{x\left(x+10\right)}=\dfrac{1}{200}\)

\(\Leftrightarrow\dfrac{10}{x\left(x+10\right)}=\dfrac{1}{200}\)

\(\Leftrightarrow200\cdot10=x\left(x+10\right)\)

\(\Leftrightarrow x^2+10x-2000=0\)

\(\Leftrightarrow x^2-40x+50x-2000=0\)

\(\Leftrightarrow x\left(x-40\right)+50\left(x-40\right)=0\)

\(\Leftrightarrow\left(x-40\right)\left(x+50\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=40\\x=-50\end{matrix}\right.\)( thỏa mãn ĐKXĐ )

Vậy....

p/s: mình mới học lớp 8 chỉ làm đc vậy, mong thứ lỗi :)

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

 Theo đ

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

Theo đề bài thì

\(x^2_2+x^2_1\ge10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)

Làm tiếp sẽ ra. Câu còn lại tương tự 

1 Cho 2 PT: \(x^2-2x-2m^2=0\) (1) \(x^2-2x-3m^2=0\) (2) a) Giải PT (1) khi \(m=0\) và PT (2) khi \(m=1\) b) CMR: Mỗi PT đã cho luôn có 2 nghiệm phân biệt với mọi m c) Tìm m để PT (1) có 2 nghiệm \(x_1,x_2\ne0\) và thỏa mãn điều kiện \(x_1^2=4x^2_2\) d) Tìm m để PT (2) có 2 nghiệm \(x_1,x_2\ne0\) và thỏa mãn điều kiện \(\dfrac{x_1}{x_2}-\dfrac{x_2}{x_1}=\dfrac{8}{3}\) 5 Cho \(\Delta\) ABC nhọn nội tiếp đường tròn (O;R), các...
Đọc tiếp

1 Cho 2 PT:

\(x^2-2x-2m^2=0\) (1)

\(x^2-2x-3m^2=0\) (2)

a) Giải PT (1) khi \(m=0\) và PT (2) khi \(m=1\)

b) CMR: Mỗi PT đã cho luôn có 2 nghiệm phân biệt với mọi m

c) Tìm m để PT (1) có 2 nghiệm \(x_1,x_2\ne0\) và thỏa mãn điều kiện \(x_1^2=4x^2_2\)

d) Tìm m để PT (2) có 2 nghiệm \(x_1,x_2\ne0\) và thỏa mãn điều kiện \(\dfrac{x_1}{x_2}-\dfrac{x_2}{x_1}=\dfrac{8}{3}\)

5 Cho \(\Delta\) ABC nhọn nội tiếp đường tròn (O;R), các đường cao BD,CE của \(\Delta\) ABC cắt đường tròn (O:R) lần lượt tại P và Q.

a) Chứng minh: \(\widehat{ADE}=\widehat{ABC}\)

b) Chứng minh: tứ giác DEQP là hình than

c) Chứng minh: \(OA\perp DE\)

d) Chứng minh: \(\frac{1}{AB}+\frac{1}{AC}>\frac{2\sin\widehat{BAC}}{BC}\)

e) Biết B , C cố định , A di động trên cung lớn BC của đường tròn (O;R). CMR: Diện tích hình tròn ngoại tiếp \(\Delta\) EAD không đổi

1
9 tháng 5 2018

@Akai Haruma

Đề thi vào lớp 10_ Hà Nội.(2019-2020)1. Cho hai biểu thức:\(A=\frac{4\left(\sqrt{x}+1\right)}{25-x}\)  và \(B=\left(\frac{15-\sqrt{x}}{x-25}+\frac{2}{\sqrt{x}+5}\right):\frac{\sqrt{x}+1}{\sqrt{x}-5}\left(x\ge0,x\ne25\right)\)1. Tính giá trị biểu thức của A khi x=92.Rút gọn biểu thức B.3. Tìm tất cả giá trị nguyên của x để biểu thức P=A.B đạt giá trị nguyên lớn nhất.2.1.Giải bài toán bằng cách lập phương trình hoặc hệ...
Đọc tiếp

Đề thi vào lớp 10_ Hà Nội.(2019-2020)

1. Cho hai biểu thức:

\(A=\frac{4\left(\sqrt{x}+1\right)}{25-x}\)  và \(B=\left(\frac{15-\sqrt{x}}{x-25}+\frac{2}{\sqrt{x}+5}\right):\frac{\sqrt{x}+1}{\sqrt{x}-5}\left(x\ge0,x\ne25\right)\)

1. Tính giá trị biểu thức của A khi x=9

2.Rút gọn biểu thức B.

3. Tìm tất cả giá trị nguyên của x để biểu thức P=A.B đạt giá trị nguyên lớn nhất.

2.

1.Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:

Hai đội công nhân cùng làm chung một công việc thì sau 15 ngày làm xong. Nếu đội thứ nhất làm riêng trong 3 ngày rồi dừng lại và đội thứ hai làm tiếp công việc đó trong 5 ngày thì cả hai đổi hoàn thành được 25 % công việc. Hỏi nếu mỗi đội làm riêng thì trong bao nhiêu ngày mới xong công việc trên?

2. Một bồn nước inox có dạng hình trụ có chiều cao 1,75m và diện tích đáy là 0,32 \(m^2\). Hỏi bồn nước này đừng đầy được bao nhiêu mét khối nước ? ( Bỏ qua bể đáy của bồn nước).

3.

1. Giải phương trình: \(x^4-7x^2-18=0\)

2. Trong mặt phẳng toạn độ Oxy, cho đường thẳng (d): \(y=2mx-m^2+1\)và Parabol (P): \(y=x^2\).

a) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt.

b) Tìm tất cả giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ : \(x_1,x_2\)thỏa mãn:

\(\frac{1}{x_1}+\frac{1}{x_2}=-\frac{2}{x_1.x_2}+1.\)

4.

Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp đường tròn (O).

Hai đường cao BE, CF của tam giác ABC cắt nhau tại H.

1. Chứng minh bốn điểm B, C, E, F cùng thuộc một đường tròn.

2. Chứng minh đường thẳng OA vuông góc với đường thẳng EF.

3. Gọi K là trung điểm của đoạn thẳng BC. Đường thẳng AO cắt đường thẳng BC tại điểm I, đường thẳng EF cắt đường thẳng AH tại điểm P. Chứng minh: \(\Delta APE~\Delta AIB\)

và KH // IP

5.

Cho biểu thức \(P=a^4+b^4-ab,\)với a, b là các số thực thỏa mãn : \(a^2+b^2+ab=3\). Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P.

(p/s: Các em vào thử sức  :))  )

 

 

 

 

 

 

 

8
7 tháng 6 2019

Câu 4:

A B C E F H O I P K Q x

a) Vì BE,CF là các đường cao của \(\Delta\)ABC nên ^BEC = ^CFB = 900

=> ^BEC và ^CFB cùng nhìn đoạn BC dưới một góc 900

=> Bốn điểm B,C,E,F cùng thuộc đường tròn đường kính BC (Theo quỹ tích cung chứa góc) (đpcm).

b) Gọi Ax là tia tiếp tuyến tại A của đường tròn (O), khi đó OA vuông góc Ax

Từ câu a ta thấy tứ giác BFEC nội tiếp đường tròn  (BC) => ^AFE = ^ACB

Mà ^ACB = ^BAx (Tính chất góc tạo bởi tiếp tuyến và dây) nên ^AFE = ^BAx

=> EF // Ax (2 góc so le trong bằng nhau)

Do OA vuông góc Ax nên OA vuông góc EF (Quan hệ song song, vuông góc) (đpcm).

c) +) Ta dễ có ^OAC = 900 - ^AOC/2 = 900 - ^ABC = ^BAH => ^OAC + ^OAH = ^BAH + ^OAH => ^BAI = ^EAP

Xét \(\Delta\)APE và \(\Delta\)AIB: ^EAP = ^BAI, ^AEP = ^ABI (Tứ giác BFEC nội tiếp) => \(\Delta\)APE ~ \(\Delta\)AIB (g.g) (đpcm).

+) Gọi AO cắt đường tròn (O) lần thứ hai tại Q. Khi đó AQ là đường kính của (O)

Nên ta có: ^ABQ = ^ACQ = 900 hay BQ vuông góc AB, CQ vuông góc AC. Mà CH vuông góc AB, BH vuông góc AC

Nên BQ // CH, BH // CQ (Quan hệ song song vuông góc) => Tứ giác BHCQ là hình bình hành

Từ đó HQ đi qua trung điểm K của BC hay H,K,Q thẳng hàng (1)

Cũng dễ thấy ^QBC = ^HCB (Vì BQ // CH) = ^FEH (Vì B,C,E,F cùng thuộc một đường tròn)

Hay ^QBI = ^HEP. Kết hợp với ^BQI = ^BQA = ^ACB = ^AHE (Cùng phụ ^CAH) = ^EHP

Suy ra \(\Delta\)BIQ ~ \(\Delta\)EPH (g.g) => \(\frac{HP}{QI}=\frac{EP}{BI}\). Lại có \(\frac{EP}{BI}=\frac{AP}{AI}\)nên \(\frac{HP}{QI}=\frac{AP}{AI}\)

Áp dụng ĐL Thales đảo vào \(\Delta\)AQH ta có IP // HQ (2)

Từ (1) và (2) ta thu được KH // IP (đpcm).

7 tháng 6 2019

Nếu ko nhìn rõ thì bn có thể tham khảo tại:

https://vietnamnet.vn/vn/giao-duc/tuyen-sinh/dap-an-mon-toan-thi-tuyen-sinh-lop-10-ha-noi-2019-cua-so-gd-dt-ha-noi-539465.html

https://vnexpress.net/giao-duc/so-giao-duc-va-dao-tao-ha-noi-cong-bo-dap-an-thi-vao-lop-10-3934904.html

https://vietnamnet.vn/vn/giao-duc/tuyen-sinh/dap-an-mon-toan-thi-tuyen-sinh-lop-10-ha-noi-2019-cua-so-gd-dt-ha-noi-539465.html

https://tin.tuyensinh247.com/dap-an-de-thi-vao-lop-10-mon-toan-ha-noi-nam-2019-c29a45461.html

Ta có : \(x^2+\left(m^2+1\right)x+m=2\)

\(\Leftrightarrow x^2+\left(m^2+1\right)x+m-2=0\left(a=1;b=m^2+1;c=m-2\right)\)

a, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay 

\(\left(m^2+1\right)^2-4\left(-2\right)=m^4+1+8=m^4+9>0\) (hoàn toàn đúng, ez =)) 

b, Áp dụng hệ thức Vi et ta có : \(x_1+x_2=-m^2-1;x_1x_2=m-2\)

Đặt \(x_1;x_2\)lần lượt là \(a;b\)( cho viết dễ hơn )

Theo bài ra ta có \(\frac{2a-1}{b}+\frac{2b-1}{a}=ab+\frac{55}{ab}\)

\(\Leftrightarrow\frac{2a^2-a}{ab}+\frac{2b^2-b}{ab}=\frac{\left(ab\right)^2}{ab}+\frac{55}{ab}\)

Khử mẫu \(2a^2-a+2b^2-b=\left(ab\right)^2+55\)

Tự lm nốt vì I chưa thuộc hđt mà lm )): 

7 tháng 7 2020

a,\(x^2+\left(m^2+1\right)x+m=2\)

\(< =>x^2+\left(m^2+1\right)x+m-2=0\)

Xét \(\Delta=\left(m^2+1\right)^2-4.\left(m-2\right)=1+m^4-4m+8\)(đề sai à bạn)

b,Để phương trình có 2 nghiệm phân biệt : \(\Delta>0\)

\(< =>\left(m^2+1\right)^2-4\left(m-2\right)>0\)

\(< =>4m-8< m^4+1\)

\(< =>4m-9< m^4\)

\(< =>m>\sqrt[4]{4m-9}\)

Ta có : \(\frac{2x_1-1}{x_2}+\frac{2x_2-1}{x_1}=x_1x_2+\frac{55}{x_1x_2}\)

\(< =>\frac{2x_1^2-x_1+2x_2^2-x_2}{x_1x_2}=\frac{\left(x_1x_2\right)^2+55}{x_1x_2}\)

\(< =>2\left[\left(x_1+x_2\right)\left(x_1-x_2\right)\right]-\left(x_1+x_2\right)=\left(x_1x_2\right)^2+55\)

đến đây dễ rồi ha