K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2019

\(a,\left(-4xy-5\right)\left(5-4xy\right)=\left(4xy+5\right)\left(4xy-5\right).\)

\(=\left(4xy\right)^2-5^2=16x^2y^2-25\)

\(b,\left(a^2b+ab^2\right)\left(ab^2-a^2b\right)=\left(ab^2+a^2b\right)\left(ab^2-a^2b\right)\)

\(=\left(ab^2\right)^2-\left(a^2b\right)^2=a^2b^4-a^4b^2\)

\(c,\left(3x-4\right)^2+2\left(3x-4\right)\left(4-x\right)+\left(4-x\right)^2\)

\(=\left[\left(3x-4\right)+\left(4-x\right)\right]^2\)

\(=\left(3x-4+4-x\right)^2=\left(2x\right)^2=4x^2\)

\(d,\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)-\left(a^4+b^4\right)\)

\(=\left[\left(a^2+b^2\right)+ab\right]\left[\left(a^2+b^2\right)-ab\right]-\left(a^4+b^4\right)\)

\(=\left(a^2+b^2\right)^2-\left(ab\right)^2-a^4-b^4\)

\(=a^4+2a^2b^2+b^4-a^2b^2-a^4-b^4=a^2b^2\)

31 tháng 8 2019

đề bài là : dùng hằng đẳng thức để khai triển và thu gọn các biểu thức

31 tháng 8 2019

ok bạn

23 tháng 6 2017

a) \(x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)

\(=\left(x+1\right)\cdot\left[x\cdot\left(x-1\right)-\left(x^2-x+1\right)\right]\)

\(=\left(x+1\right)\left(x^2-x-x^2+x-1\right)\)

\(=\left(x+1\right)\cdot\left(-1\right)\)

\(=-1\left(x+1\right)\)

b) \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x+4\right)\left(x-4\right)\)

\(=x^3-3x^2+3x-1-\left(x^3+8\right)+\left(3x+12\right)\left(x-1\right)\)

\(=x^3-3x^2+3x-1-\left(x^3+8\right)+3x^2-3x+12x-12\)

\(=x^3-1-x^3-8+12x-12\)

\(=-21+12x\)

c) \(3x^2\left(x+1\right)\left(x-1\right)+\left(x^2-1\right)^3-\left(x^2-1\right)\left(x^4+x^2+1\right)\)

\(=3x^2\left(x^2-1\right)+x^6-3x^4+3x^2-1-\left(x^6-1\right)\)

\(=3x^4-3x^2+x^6-3x^4+3x^2-1-x^6+1\)

\(=0\)

24 tháng 6 2017

câu b bạn làm sai rồi í!

31 tháng 7 2020

a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)

\(\Rightarrow x^5+x^4y+x^3y^2+x^2y^3+y^5-yx^4-x^3y^2-x^2y^3-xy^4-y^5=VP\)

\(\Rightarrow dpcm\)

b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(\Rightarrow x^5-x^4y+x^3y^2-x^2y^3+xy^4+yx^4-x^3y^2-xy^4+y^5=VP\)

\(\Rightarrow dpcm\)

c.d làm tương tự

31 tháng 7 2020

Bài làm

a) Biến đổi vế trái, ta được:

\(VT=\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)

\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)

\(=\left(x^5-y^5\right)+\left(x^4y-x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(x^2y^3-x^2y^3\right)+\left(xy^4-xy^4\right)\)

\(=x^5-y^5=VP\left(đpcm\right)\)

b) Biến đổi vế trái, ta có:

\(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=\left(x^5+y^5\right)+\left(-x^4y+x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(-x^2y^3+x^2y^3\right)+\left(xy^4-xy^4\right)\)

\(=x^5+y^5=VP\left(đpcm\right)\)

c) Biến đổi vế trái, ta có: 

\(VT=\left(a+b\right)\left(a^3-a^2b+ab^2-b^3\right)\)

\(=a^4-a^3b+a^2b^2-ab^3+a^3b-a^2b^2+ab^3-b^4\)

\(=\left(a^4-b^4\right)+\left(-a^3b+a^3b\right)+\left(a^2b^2-a^2b^2\right)+\left(-ab^3+ab^3\right)\)

\(=a^4-b^4=VP\left(đpcm\right)\)

d) Đây là hằng đẳng thức, như vế phải hình như bạn viết bị sai, mik sửa là vế phải nha.

\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)

Biến đổi vế trái, ta có:

\(VT=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)

\(=\left(a^3+b^3\right)+\left(-a^2b+a^2b\right)+\left(ab^2-ab^2\right)\)

\(=a^3+b^3=VP\left(đpcm\right)\)

17 tháng 6 2019

\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)

\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)

\(=2a^2.2b^2-4a^2b^2=0\)

\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)

\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)

\(=\left[4-11x\right]^2\)

\(=16-88x+121x^2\)

chúc bn học tốt

25 tháng 7 2017

Câu 1: \(3x+2\left(5-x\right)=0\)

\(\Rightarrow3x+10-2x=0\)

\(\Rightarrow x+10=0\)

\(\Rightarrow x=-10\).

Câu 2: \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\)

\(\Rightarrow2x\left(5-3x\right)-2x\left(5-3x\right)-3\left(x-7\right)=0\)

\(\Rightarrow\left(2x-2x\right)\left(5-3x\right)-3\left(x-7\right)=3\)

\(\Rightarrow-3\left(x-7\right)=3\)

\(\Rightarrow x-7=-1\)

\(\Rightarrow x=6.\)

25 tháng 7 2017

Câu 3:

Áp dụng hằng đẳng thức mở rộng có:

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=a^3+b^3+c^3-3abc.\)

Câu 4: \(3x^2\left(3x^2-2y^2\right)-\left(3x^2-2y^2\right)\left(3x^2+2y^2\right)\)

\(=\left(3x^2-2y^2\right)\left[3x^2-\left(3x^2+2y^2\right)\right]\)

\(=\left(3x^2-2y^2\right)\left(-2y^2\right)\)

\(=-6x^2y^2+4y^3.\)

Câu 5:

Ta có: \(R=\left(2x-3\right)\left(4+6x\right)-\left(6-3x\right)\left(4x-2\right)\)

\(=\left(8x-12+12x^2-18x\right)-\left(24x-12x^2-12+6x\right)\)

\(=12x^2-10x-12-24x+12x^2+12-6x\)

\(=24x^2-40x.\)

10 tháng 10 2019

câu a là hằng đẳng thức luôn

A=(2x+4)^2

B khai triển tung tóe ra thì phần sau triệt tiêu hết còn 4(a^2+b^2+c^2)

câu c cảm giác sai đề vì mấy câu này phải là (3x)^ ms ra hdt chứ nhỉ

29 tháng 6 2017

\(=3x^2\left(x^2-1\right)+\left(x^8-3x^4+3x^2-1\right)-\left(x^8-1\right)\)

\(=3x^4-3x^2+x^8-3x^4+3x^2+1-x^8+1\)

\(=2\)

=2 nha ban

(con cach lam ban nhan dang thuc len rui rut gon lai)