Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(n^2-3n+9\)chia het cho \(n-2\)
\(\Leftrightarrow\)\(n^2-2n-n-2+11\)chia het cho \(n-2\)
\(\Leftrightarrow\)\(\left(n-2\right)\left(n+1\right)+11\)chia het cho \(n-2\)
\(\Leftrightarrow\)11 chia het cho \(n-2\)
\(\Rightarrow\)\(n-2\in U\left(11\right)\)\(\Rightarrow\)\(n-2\in\left\{-11;-1;1;11\right\}\)
\(\Rightarrow\)\(n\in\left\{-9;1;3;13\right\}\)
b) 2n-1 chia hết cho n-2
\(\Rightarrow2n-2+3\) chia hết cho\(n-2\)
\(\Rightarrow3\)chia hết cho \(n-2\)
\(\Rightarrow n-2\in U\left(3\right)\)\(\Rightarrow n-2\in\left\{-3;-1;1;3\right\}\)\(\Rightarrow n\in\left\{-1;1;3;5\right\}\)
1)Ta có:
Để a lớn nhất, thỏa mãn =>\(a\le195\)
a+495 chia hết a
và 195-a chia hết a
=>a+495+195-a chia hết d
=>690 chia hết a
=>a là Ư(690) mà \(a\le195\)
\(\Rightarrow a=138\)
a) Ta xét các trường hợp:
+) Với n = 3k \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=\left(3k-1\right)\left(3k+2\right)+12\)
Ta thấy (3k - 1)(3k + 2) không chia hết cho 3, 12 chia hết cho 3 nên (3k - 1)(3k + 2) + 12 không chia hết cho 3 hay (3k - 1)(3k + 2) + 12 không chia hết cho 9.
+) Với n = 3k + 1 \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=3k\left(3k+3\right)+12=9k\left(k+1\right)+12\)
Ta thấy \(9k\left(k+1\right)⋮9;12⋮̸9\Rightarrow9k\left(k+1\right)+12⋮̸9\)
+) Với n = 3k + 2 \(\left(k\in Z\right)\), ta có: \(\left(n-1\right)\left(n+2\right)+12=\left(3k+1\right)\left(3k+4\right)+12\)
Ta thấy (3k + 1)(3k + 4) không chia hết cho 3, 12 chia hết cho 3 nên (3k + 1)(3k + 4) + 12 không chia hết cho 3 hay (3k + 1)(3k + 4) + 12 không chia hết cho 9.
b) Tương tự bài trên.
Ta có :
A = (n + 1)(3n + 2) và n \(\in N\)
TH1 : n là số lẻ
=> A có (n + 1) chẵn => A chia hết cho 2 (1)
TH2 : n là số chẵn
=> A có (3n + 2) chẵn => A chia hết cho 2 (2)
Từ (1) và (2) => Với n \(\in N\) Thì A luôn chia hết cho 2
1.
Nếu \(n⋮2\): Đặt \(n=2k\left(k\in N\right)\)
\(A=\left(n+1\right)\left(3n+2\right)=\left(n+1\right)\left(3\cdot2k+2\right)=\left(n+1\right)\cdot2\cdot\left(3k+1\right)⋮2\)
Nếu \(n⋮̸2\): Đặt \(n=2k+1\left(k\in N\right)\)
\(A=\left(n+1\right)\left(3n+2\right)=\left(2k+1+1\right)\left(3n+2\right)=\left(2k+2\right)\left(3n+2\right)=2\left(k+1\right)\left(3n+2\right)⋮2\)
Vậy cả hai trường hợp đều chia hết cho \(2\Rightarrow A⋮2\)