Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xem cách làm câu (b);(c);(d)
Bạn tham khảo:
Câu hỏi của Nguyễn Ngọc Thảo My - Toán lớp 7 - Học toán với OnlineMath
các bạn giúp mik nha
Cho A bằng 5^2021+1 phần 5^2022+1 ; B bằng 5^2020+1 phần 5^2021+1. Hãy so sánh A và B
Ta có:
\(8^7-2^{18}=8^7-\left(2^3\right)^6=8^7-8^6=8^5.\left(8^2-8\right)=8^5.56⋮14\)
\(\Rightarrow8^7-2^{18}⋮14\left(đpcm\right)\)
\(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{18}.2^3-2^{18}=2^{18}\left(2^3-1\right)=2^{18}.7=2^{17}.2.7=2^{17}.14⋮14\)
Vây....................
P = 32 + 62 + 92 + ... + 302
P = 32 . (12 + 22 + 32 + ... + 102)
P = 9 . 385
P = 3465
a) C = 106 + 57
C = 26 . 56 + 57
C = 56 . (26 + 5)
C = 56 . (64 + 5)
C = 56 . 69 chia hết cho 69
b) 310 . 199 - 39 . 500
= 39 . (3.199 - 500)
= 39 . (597 - 500)
= 39 . 97 chia hết cho 97
a/ 8^7-2^18=1835008 chia hết cho 14=131072
b/10^6-5^7=921875 chia hết cho 59=15625
7^6+7^5-7^4=132055 hết cho 55=2401
a) 8^7-2^18= (2^3)-2^18=2^21-2^18=2^17 * (2^4-2)=2^17 * 14
14 chia hết cho 14 => ĐPCM
b) 10^6-5^7=5^6(2^6 - 5)=5^6 * 59
59 chia hết 59 => ĐPCM
c) 7^6 + 7^5 - 7^4 = 7^4 ( 7^2 + 7 - 1) = 7^4 * 55
55 cha hết 5 => ĐPCM
d) 16^5 + 2^15 = (2^4)^5 + 2^15= 2^15 * ( 2^5 + 1) = 2^15 * 33
33 chia hết 33 => ĐPCM
e và f chịu
g thì tính chữ số tận cùn của tổng đó
h) = 2^10 * (1 + 2 + 2^2) = 2^10 * 7
7 chia hết cho 7 => nó là 1 số tự nhiên
i chịu
7^6+7^5+7^4 chia hết cho 11
= 7^4.2^2+7^4.7+7^4
= 7^4.(2^2+7+1)
= 7^4. 11
Vì tích này có số 11 nên => chia hết cho 7
\(7^6+7^5-7^4\)
\(=7^4.\left(7^2+7-1\right)\)
\(=7^4.\left(49+7-1\right)\)
\(=7^4.55⋮55\)
\(\Rightarrow7^6+7^5-7^4⋮55\left(dpcm\right)\)
a)
$7^6+7^5-7^4=7^4(7^2+7-1)=7^4.55$ chia hết cho $55$.
b) Áp dụng $a^n+b^n$ sẽ chia hết cho $a+b$ với $n$ lẻ.
$16^5+2^{15}=16^5+8^5$ sẽ chia hết cho $16+5=24$ nên sẽ chia hết cho $3$.
Giờ chỉ cần chứng minh cái đó chia hết cho $11$.
Thật vậy:
$16^5 \equiv 5^5 \equiv 1(mod 11)
\\2^{15} \equiv (2^5)^3 \equiv 32^3 \equiv (-1)^3 \equiv -1 (mod 11)
\\\Rightarrow 16^5+2^{15} \equiv 1-1=0(mod 11)$
Do đó có đpcm
\(A=7^6+7^5-7^4\)
\(A=7^4.7^2+7^4.7-7^4.1\)
\(A=7^4\left(7^2+7-1\right)\)
\(A=7^4.55\)
\(A⋮55\rightarrowđpcm\)
\(B=16^5+2^{15}\)
\(B=\left(2^4\right)^5+2^{15}\)
\(B=2^{20}+2^{15}\)
\(B=2^{15}.2^5+2^{15}.1\)
\(B=2^{15}\left(2^5+1\right)\)
\(B=2^{15}.33\)
\(B⋮33\rightarrowđpcm\)
Bài 1:
Ta có: \(7^6+7^5-7^4\)
\(=7^4.\left(7^2+7-1\right)\)
\(=7^4.\left(49+7-1\right)\)
\(=7^4.55\) \(⋮\) \(55\)
=> đpcm
Bài 2:
Ta có:
\(\left(-32\right)^9=-\left(2^5\right)^9=-2^{45}=-2^{13}.2^{32}\)
\(\left(-18\right)^{13}=-2^{13}.\left(3^2\right)^{13}=-2^{13}.3^{26}\)
Lại thấy: \(3^{26}>3^{24}=27^8>16^8=2^{32}\)
=> \(-2^{13}.2^{32}>-2^{13}.3^{26}\)
=> \(\left(-32\right)^9>\left(-18\right)^{13}\)
Bài làm :
Bài 1 :
Ta có ;
\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55=7^4.11.5⋮11\)
=> Điều phải chúng minh .
Bài 2 :
Ta có :
Vì -245 > -252 =>(-32)9 > (-18)13
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!