K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2022

Bài 1:

a: \(=\left(19+69\right)\cdot A=88\cdot A⋮44\)

b: \(A=n\left(n^2-1\right)\left(n^2-4\right)\)

=n(n-1)(n+1)(n-2)(n+2)

Vì đây là 5 số liên tiếp

nên A chia hết cho 5!

=>A chia hết cho 120

c: \(C=\left(n+n+2\right)^3-3n\left(n+2\right)\left(n+2+n\right)+\left(n+1\right)^3\)

\(=9\left(n+1\right)^3-3n\left(n+2\right)\left(2n+2\right)\)

\(=9\left(n+1\right)^3-6n\left(n+1\right)\left(n+2\right)\)

Vì n;n+1;n+2 là 3 số liên tiếp

nên n(n+1)(n+2) chia hết cho 6

=>-6n(n+1)(n+2) chia hết cho 36

=>C chia hết cho 36

Bài 3: 

a: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

=-5n chia hết cho 5

b: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)

\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)

\(=n^2+3n-4-\left(n^2-3n-4\right)\)

\(=6n⋮6\)

18 tháng 6 2019

\(a,\left(2x-3\right)n-2n\left(n+2\right)\)

\(=n\left(2x-3-2n-4\right)\)

\(=-7n\)

\(-7⋮7\Rightarrow-7n⋮7\) => ĐPCM

\(b,n\left(2n-3\right)-2n\left(n+1\right)\)

\(=n\left(2n-3-2n-2\right)\)

\(=-5n⋮5\) (ĐPCM)

Rút gọn

\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)

\(=-76\)

\(b,\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)

\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)

\(=9\)

\(c,3x^2\left(x^2+2\right)+4x\left(x^2-1\right)-\left(x^2+2x+3\right)\left(3x^2-2x+1\right)\)

\(=3x^4+6x^2+4x^3-4x-3x^4+2x^3-x^2-6x^3+4x^2-2x-9x^2+6x-3\)

= -3

7 tháng 8 2017

bài 2 :

a) x.(x+2) - 3x - 6 = 0

x ( x + 2) - 3 ( x + 2 ) =0

(x+2) . ( x - 3 ) = 0

Vậy x = -2 hay x = 3

6 tháng 11 2017

bai 3

a, x2+9x+20

=x2+5x+4x+20

=x(x+5)+4(x+5)

= (x+4)(x+5)

b,x2+x-12

=x2+4x-3x-12

=x(x+4)-3(x+4)

=(x-3)(x+4)

26 tháng 10 2022

Bài 3:

a: \(=35^{2018}\left(35-1\right)=35^{2018}\cdot34⋮17\)

b: \(=43^{2018}\left(1+43\right)=43^{2018}\cdot44⋮11\)

Bài 1: 

b: 

x=9 nên x+1=10

\(M=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...-x\left(x+1\right)+x+1\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...-x^2-x+x+1\)

=1

c: \(N=\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)+2^{10}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\left(1+2^5+2^{10}\right)⋮31\)

1: \(4a^2b^4-c^4d^2\)

\(=\left(2ab^2-c^2d\right)\left(2ab^2+c^2d\right)\)

4: \(\left(a+b\right)^3-\left(a-b\right)^3\)

\(=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2b\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)

\(=2b\left(3a^2+b^2\right)\)

5: \(\left(a+b\right)^3+\left(a-b\right)^3\)

\(=a^3+b^3+3a^2b+3ab^2+a^3-3a^2b+3ab^2-b^3\)

\(=2a^3+6ab^2\)

\(=2a\left(a^2+3b^2\right)\)