Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Chuyển vế ta có:
a3 + b3 - ab(a-b) = a2(a-b) - b2(a-b) = (a+b)(a-b)2 >= 0
Suy ra đpcm
b/ a2/2 + b2/2 >= ab
a2/2 + 1/2 >= a
b2/2 +1/2 >= b
Cộng theo vế 3 BĐT ta có đpcm
Xét hiệu:
a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc
=(a+b)3+c3-3ab.(a+b+c)
=(a+b+c)[(a+b)2-(a+b).c+c2]-3ab.(a+b+c)
=(a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab.(a+b+c)
=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)
=(a+b+c)(a2-ab+b2-ac-bc+c2)
ta lại có:
2.(a2-ab+b2-ac-bc+c2)
=2a2-2ab+2b2-2ac-2bc+2c2
=a2-2ab+b2+b2-2bc+c2+a2-2ac+c2
=(a-b)2+(b-c)2+(a-c)2\(\ge\)0 với mọi a,b,c
=>2.(a2-ab+b2-ac-bc+c2)\(\ge\)0
<=>a2-ab+b2-ac-bc+c2\(\ge\)0
ta có thêm a,b,c\(\ge\)0
=>(a+b+c)(a2-ab+b2-ac-bc+c2)\(\ge\)0 với mọi a,b,c
=>a3+b3+c3-3abc\(\ge\)0
<=>a3+b3+c3\(\ge\)3abc
Áp dụng BĐT cô si với ba số không âm ta có :
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3\sqrt[3]{\left(abc\right)^3}=3abc\)
=> ĐPCM
a) ta có (x-y)2>=0 với mọi x,y
=>x2-2xy+y2>=0 với mọi x,y
=>x2+y2>=2xy với mọi x,y
=>(x2+y2)/xy>=2 với mọi x,y>0
=>x/y+y/x>=2 với mọi x,y>0
áp dụng bất đẳng thức trên ta có:
(a2+1)/1+1/(a2+1)>=2
=>a2+1+1/(a2+1)>=2
=>a2+1/(a2+1)>=1 (dpcm)
b)áp dụng bất đẳng thức x2+y2>=2xy (chứng minh trên) ta có:
a2+b2>=2ab
=>(a2+b2).c>=2abc (1)
b2+c2>=2bc
=>(b2+c2).a>=2abc (2)
a2+c2>=2ac
=>(a2+c2).b>=2abc (3)
từ (1),(2),(3) cộng vế với vế ta sẽ suy ra đc dpcm
a)Xét hiệu:
\(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
tương tự