Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1)
a) Tứ giác AIHK có 3 góc vuông \(\widehat{HKA}=\widehat{HIA}=\widehat{KAI}=90^0\)
Nên suy ra góc còn lại cũng vuông.Tứ giác có 4 góc vuông là hình chữ nhật
b) Câu này không đúng rồi bạn
Nếu thực sự hai tam giác kia đồng dạng thì đầu bài phải cho ABC vuông cân
Vì nếu góc AKI = góc ABC = 45 độ ( IK là đường chéo đồng thời là tia phân giác của hình chữ nhật)
c) Ta có : Theo hệ thức lượng trong tam giác ABC vuông
\(AB^2=BC.BH=13.4\)
\(\Rightarrow AB=2\sqrt{13}\)
\(AC=\sqrt{9\cdot13}=3\sqrt{13}\)
Vậy \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{6\cdot13}{2}=39\left(cm^2\right)\)
Bài 2)
a) \(ED=AD-AE=17-8=9\)
Xét tỉ lệ giữa hai cạnh góc vuông trong hai tam giác ABE và DEC ta thấy
\(\frac{AB}{AE}=\frac{ED}{DC}\Leftrightarrow\frac{6}{8}=\frac{9}{12}=\frac{3}{4}\)
Vậy \(\Delta ABE~\Delta DEC\)
b) \(\frac{S_{ABE}}{S_{DEC}}=\frac{AB\cdot AE\cdot\frac{1}{2}}{DE\cdot DC\cdot\frac{1}{2}}=\frac{6\cdot8}{9\cdot12}=\frac{4}{9}\)
c) Kẻ BK vuông góc DC.Suy ra tứ giác ABKD là hình chữ nhật vì có 4 góc vuông
Nên BK = AD và AB = DK
\(\Rightarrow KC=DC-DK=12-6=6\)
Theo định lý Pytago ta có
\(BC=\sqrt{BK^2+KC^2}=\sqrt{17^2+6^2}=5\sqrt{13}\)
Bài 1
A B C M H K 1 a, Xét ΔABM và ΔACB có
\(\left\{{}\begin{matrix}\widehat{BAC}\text{ chung}\\\widehat{ABM}=\widehat{C}\text{(gt)}\end{matrix}\right.\)
⇒ ΔABM ~ ΔACB (g.g)(đpcm)
b, Vì ΔABM ~ ΔACB
⇒ \(\frac{AB}{AC}=\frac{AM}{AB}\)
⇒ AB2 = AM . AC
⇒ AM = \(\frac{AB^2}{AC}=\frac{2^2}{4}=\frac{4}{4}=1\) (cm)
Vậy AM = 1cm
c, Vì ΔABM ~ ΔACB
⇒ \(\widehat{M_1}=\widehat{ABC}\)
⇒ \(\widehat{M_1}=\widehat{ABH}\)
Vì AH ⊥ BC ⇒ \(\widehat{AHB}=90^0\)
AK ⊥ BM ⇒ \(\widehat{AKM}=90^0\)
ΔAHB và ΔAKM có
\(\left\{{}\begin{matrix}\widehat{ABH}=\widehat{M_1}\\\widehat{AHB}=\widehat{AKM}=90^0\end{matrix}\right.\)
⇒ ΔAHB ~ ΔAKM (g.g)
⇒ \(\frac{AB}{AM}=\frac{AH}{AK}\)
⇒ AB . AK = AH . AM (đpcm)
d, Vì ΔABH ~ ΔAMK
⇒ \(\frac{\text{SΔABH}}{\text{SΔAMK}}=\left(\frac{AB}{AM}\right)^2\) (Tỉ số diện tích của 2 tam giác đồng dạng bằng bình phương tỉ số đồng dạng)
⇒ \(\frac{\text{SΔABH}}{\text{SΔAMK}}=\left(\frac{2}{1}\right)^2\)
⇒ \(\frac{\text{SΔABH}}{\text{SΔAMK}}=4\)
⇒ SΔABH = 4SΔAMK (đpcm)
Gọi N là trung điểm của EC => FN là đường trung bình của ∆HEC => FN // NC
Mà HC⊥AH nên FN⊥AH
∆AHN có hai đường cao HE và NF cắt nhau tại F nên F là trực tâm của tam giác => AF⊥HN (1)
∆ABC cân tại A nên AH là đường cao cũng là trung tuyến => BH = HC => HN là đường trung bình của ∆BEC => HN // BE (2)
Từ (1) và (2) suy ra AF⊥BE (đpcm)
Bài 1:
a: BC=10cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC đồg dạg với ΔHBA
c: Xét ΔaBC vuông tại A có AHlà đường cao
nên \(AB^2=BH\cdot BC\)
=>BH=36/10=3,6(cm)
=>CH=6,4cm
d: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
hay BD/3=CD/4
Áp dụng tính chất của dãy tỉ só bằng nhau ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
Do đó:BD=30/7cm