K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{y}=\dfrac{u}{v}=\dfrac{x-u}{y-v}\)

\(\Rightarrow x\left(y-v\right)=y\left(x-u\right)\)

Mà x > y

\(\Rightarrow y-v< x-u\)

\(\Rightarrow x+v>y+u\left(đpcm\right)\)

Vậy...

5 tháng 6 2017

ta có:\(x>y>u>v\)

\(\Rightarrow x^2>y^2>u^2>v^2\)

giả sử x+v>y+u là đúng

\(\Rightarrow\left(x+v\right)^2>\left(y+u\right)^2\\ \Leftrightarrow x^2+v^2+2xv>y^2+u^2+2yu\\ \Leftrightarrow x^2-y^2+v^2-u^2>2\left(yu-xv\right)\\ \Leftrightarrow x^2-x^2+u^2-u^2>2\left(yu-xv\right)\\ \Leftrightarrow yu-xv=0\\ \Leftrightarrow yu=xv\\ \Rightarrow\dfrac{x}{y}=\dfrac{u}{v}\left(đúng\right)\)

do đó: \(x+v>y+u\) đúng.

13 tháng 5 2018

Cả 2 vế của bất đẳng thức đều ko âm nên ta có :

\(\left(|x|+|y|\right)^2\ge|x+y|^2\)

\(\Leftrightarrow\left(|x|+|y|\right)\left(|x|+|y|\right)\ge\left(x+y\right)\left(x+y\right)\)

\(\Leftrightarrow x^2+2.|x|.|y|+y^2\ge x^2+2xy+y^2\)

\(\Leftrightarrow|x|.|y|\ge xy\)(luôn đúng \(\forall x,y\inℚ\))

Vậy bất đẳng thức trên đúng => đpcm

Dấu "=" xảy ra \(\Leftrightarrow|xy|=xy\)\(\Leftrightarrow x,y\)cùng dấu

25 tháng 2 2020

Ta có : \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

\(\Leftrightarrow\left(\left|x+y\right|\right)^2\le\left(\left|x\right|+\left|y\right|\right)^2\)

\(\Leftrightarrow x^2+2xy+y^2\le x^2+\left|2xy\right|+y^2\)

\(\Leftrightarrow2xy\le\left|2xy\right|\) ( luôn đúng )

15 tháng 11 2015

Không phải khi sai à ?

Vậy có lẽ khi làm không đúng !!!!!!

25 tháng 10 2015

Có 4x+ y2 = (2x)2 + y2

=> (4x+ y2)(2+ 12) =( (2x)2 + y2) (2+ 12)

Áp dụng bất đẳng thức Bunhiakốpxki

=>( (2x)2 + y2) (2+ 12) >= (4x + y)2 = 1     

=> (4x+ y2)*5 >= 1

=> 4x2 + y>= 1/5

>= là lớn hơn hoặc bằng


21 tháng 11 2016

a) x - y + z = 0

<=> (x - y + z)2 = 0

<=> (x - y + z).x - (x - y + z).y + (x - y + z).z = 0

<=> x2 - xy + xz - xy + y2 - zy + xz - zy + z2 = 0

=> x2 + y2 + z2 - 2xy + 2xz - 2zy = 0

=> x2 + y2 + z2 = 2xy - 2xz + 2zy = 2.(xy - xz + yz)

\(x^2+y^2+z^2\ge0\) nên \(2.\left(xy-xz+yz\right)\ge0\)

\(\Leftrightarrow xy-xz+yz\ge0\left(đpcm\right)\)

b) ĐK: x ϵ N

\(8.2^n+2^{n+1}=8.2^n+2^n.2=2^n.\left(8+2\right)=2^n.10⋮10\)

21 tháng 11 2016

a mik ko biết

b. 8.2^n +2^(n+1)

A= 8. 2^n + 2^n +2

=2^n(8+2)

=2^n.10

vậy A chia hết cho 10 (đpcm)