K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2016

Cach tuong tu 

AM-GM \(2+2yz=x^2+y^2+z^2+2yz=x^2+\left(y+z\right)^2\ge2x\left(y+z\right)\)

\(\Rightarrow1+yz\ge x\left(y+z\right)\Rightarrow x^2+x+yz+1\ge x\left(x+y+z+1\right)\)

\(\Rightarrow\frac{x^2}{x^2+x+yz+1}\le\frac{x}{x+y+z+1}\). Se cm \(x+y+z-xyz\le2\), that vay ap dung C-S 

\(x+y+z-xyz=x\left(1-yz\right)+\left(y+z\right)\)\(\le\sqrt{\left[x^2+\left(y+z\right)^2\right]\left[\left(1-yz\right)^2+1\right]}\)

\(=\sqrt{2\left(1+yz\right)\left[\left(yz\right)^2-2yz+2\right]}=\sqrt{y^2z^2\left(yz-1\right)+4}\le2\)

\(\Rightarrow M\le\frac{x}{x+y+z+1}+\frac{y+z}{x+y+z+1}+\frac{1}{x+y+z+1}=1\)

Dau "=" xay ra khi x=y=1; z=0

27 tháng 12 2016

mình mới học lớp 7 mí hihi

3 tháng 3 2020

a) ta có: \(|4x^2-1|\ge0\forall x\)

\(|2x-1|\ge0\forall x\Leftrightarrow3x|2x-1|\ge0\forall x\)

Mà \(|4x^2-1|+3x|2x-1|=0\)

=> I4x^2-1I và 3xI2x-1I=0

=> 4x^2-1=0 và 3x=0 hoặc 2x-1=0

=> 4x^2=1 và x=0 hoặc 2x=1

=> x^2=1/4 và x=0 hoặc x=1/2

=> x=\(\pm\frac{1}{2}\)và x=0 hoặc x=1/2

Vậy x=\(\pm\frac{1}{2}\); x=0

3 tháng 3 2020

Phạm Nhật Quỳnh

Bạn xem lại nhé x chưa chắc đã dương nha 

13 tháng 5 2018

Bài 1:

a) xét tg ABE và tg ACF có:

AEB = AFC = 90 độ

BAE = CÀ( A chung )

=> tg ABE = tg ACF ( g.g)

=> AF/AB = AE/AC

=> AE*AC = AF*AB

15 tháng 5 2020

Bài 3 thì \(\le1\)

Bài 4 thì \(\ge\frac{3}{4}\) nhé

23 tháng 5 2021

A B C P M N D E F

a) Ta có ^APB = ^BAC/2 + ^ABC/2 + ^ACB = 900 + ^ACB/2 = ^AMP; ^BAP = MAP

Suy ra \(\Delta\)AMP ~ \(\Delta\)APB (g.g) => \(\frac{AM}{PM}=\frac{AP}{BP}\). Tương tự \(\frac{PN}{BN}=\frac{AP}{BP}\)

Từ đó \(\frac{AM}{BN}.\frac{PN}{PM}=\left(\frac{AP}{BP}\right)^2\). Dễ thấy PM = PN, vậy \(\frac{AM}{BN}=\left(\frac{AP}{BP}\right)^2\)

b) Theo hệ thức lượng và tam giác đồng dạng, ta có biến đổi sau:

\(\frac{AM}{AC}+\frac{BN}{BC}+\frac{CP^2}{BC.AC}\)

\(=\frac{AM}{AP}.\frac{AP}{AC}+\frac{BN}{BP}.\frac{BP}{BC}+\frac{CP^2}{BC.AC}\)

\(=\frac{AP^2}{AB.AC}+\frac{BP^2}{BA.BC}+\frac{CP^2}{CA.CB}\)

\(=\frac{AP^2.BC+BP^2.CA+CP^2.AB}{BC.CA.AB}\)

\(=\frac{AP^2.\sin A+BP^2.\sin B+CA^2.\sin C}{2S}\)(S là diện tích tam giác ABC)

\(=\frac{AP^2.\sin\frac{A}{2}.\cos\frac{A}{2}+BP^2.\sin\frac{B}{2}.\cos\frac{B}{2}+CP^2.\sin\frac{C}{2}.\cos\frac{C}{2}}{S}\)

\(=\frac{FA.FP+DB.DP+EC.EP}{S}=\frac{dt\left[AFPE\right]+dt\left[BDPF\right]+dt\left[CEPD\right]}{S}=1.\)

NV
28 tháng 4 2019

Đặt \(\left\{{}\begin{matrix}x-y=a\\z-x=b\\y-z=c\end{matrix}\right.\) đề bài trở thành \(\left\{{}\begin{matrix}abc\ne0\\a+b+c=0\\ab=-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}c=-\left(a+b\right)\\b=-\frac{1}{a}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{1}{c^2}=\frac{1}{\left(a+b\right)^2}\\b^2=\frac{1}{a^2}\end{matrix}\right.\)

Ta cần chứng minh \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge4\)

\(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}=\frac{1}{a^2}+a^2+\frac{1}{\left(a-\frac{1}{a}\right)^2}\)

\(P=\left(a-\frac{1}{a}\right)^2+\frac{1}{\left(a-\frac{1}{a}\right)^2}+2\ge2\sqrt{\left(a-\frac{1}{a}\right)^2.\frac{1}{\left(a-\frac{1}{a}\right)^2}}+2=4\) (đpcm)