K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2021

#muon roi ma sao con

A B C D F E G

a, Xét tam giác BEF và tam giác DEA ta có : 

^BEF = ^DEA ( đ.đ ) vì AD // BC ( ABCD là hình bình hành )

\(\frac{AE}{EF}=\frac{DE}{BE}\) do AD // BC ( theo định lí Ta lét ) (1) 

Vậy tam giác BEF ~ tam giác DEA ( c.g.c )

b, Xét tam giác EGD và tam giác EAB ta có : 

^GED = ^EAB ( đ.đ )

\(\frac{AE}{EG}=\frac{BE}{ED}\)AB // DG ( theo định lí Ta lét )  (2) 

Vậy tam giác EGD ~ tam giác EAB ( c.g.c )

\(\Rightarrow\frac{EG}{EA}=\frac{ED}{EB}\Rightarrow EG.EB=ED.EA\)( đpcm )

c, Từ (2) ta có : \(\frac{AE}{EG}=\frac{BE}{ED}\Rightarrow\frac{EG}{AE}=\frac{ED}{BE}\)( 3 ) 

Từ (1) ; (3) ta có : \(\frac{AE}{EF}=\frac{EG}{AE}=\frac{ED}{BE}\Rightarrow AE^2=EG.EF\)

30 tháng 4 2021

A B C D E F H 3 6

a, Xét tam giác AEB và tam giác AFC ta có 

^AEB = ^AEC = 900

^A _ chung 

Vậy tam giác AEB ~ tam giác AFC ( g.g )

\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)( tỉ số đồng dạng ) \(\Rightarrow AE.AC=AB.AF\)

25 tháng 9 2015

A D B C E F

+) ED // BF; FE // BD => Tứ giác FBDE là hbh => DE = BF

+) Dễ có: tam giác ADE đồng dạng với ABC => \(\frac{S_{ADE}}{S_{ABC}}=\left(\frac{DE}{BC}\right)^2\)  (*) ( tỉ số diện tích = bình phương tỉ số đồng dạng)

Tam giác CFE đồng dạng với tam giác CAB => \(\frac{S_{CFE}}{S_{ABC}}=\left(\frac{CF}{BC}\right)^2\)

=> \(\frac{S_{ADE}}{S_{ABC}}:\frac{S_{CFE}}{S_{ABC}}=\left(\frac{DE}{BC}\right)^2:\left(\frac{CF}{CB}\right)^2\) => \(\frac{S_{ADE}}{S_{CFE}}=\left(\frac{DE}{FC}\right)^2=\frac{101}{143}\) => \(\left(\frac{BF}{CF}\right)^2=\frac{101}{143}\)

=> \(\frac{BF}{CF}=\sqrt{\frac{101}{143}}\) => \(\frac{BF}{CF+BF}=\frac{\sqrt{101}}{\sqrt{143}+\sqrt{101}}\)=> \(\frac{BF}{BC}=\frac{\sqrt{101}}{\sqrt{143}+\sqrt{101}}=\frac{DE}{BC}\)

Thay vào (*) => \(\frac{S_{ADE}}{S_{ABC}}=\left(\frac{\sqrt{101}}{\sqrt{101}+\sqrt{143}}\right)^2=\frac{101}{S_{ABC}}\) => S(ABC) =....

25 tháng 9 2015

Câu này là của Ai Lê hay Quỳnh ?