Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có BM , CN là các đường cao \(=>\angle\left(BMC\right)=\angle\left(CNB\right)=90^o\)(1)
mà N,M là 2 đỉnh liên tiếp của tứ giác BNMC
\(=>\) tứ giác BMNC nội tiếp đường tròn
=>4 điểm B,M,N,C cùng thuộc 1 đường tròn
b, có AD là đường kính (O) =>tam giác ACD nội tiếp (O)
\(=>\angle\left(ACD\right)=90^o\)(2)
từ(1)(2) \(=>BM//CD=>BH//CD\left(3\right)\)
tương tự =>tam giác ABD nội tiếp (O)\(=>\angle\left(ABD\right)=90^o\left(4\right)\)
từ(1)(4) \(=>BD//CN< =>CH//BD\left(5\right)\)
từ(3)(5)=>BHCD là hình bình hành
a: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
=>B,F,E,C cùng thuộc một đường tròn
b: Xét (O) có
ΔABA' là tam giác nội tiếp
AA' là đường kính
Do đó: ΔABA' vuông tại B
=>BA'\(\perp\)AB
mà CH\(\perp\)AB
nên BA'//CH
Xét (O) có
ΔACA' là tam giác nội tiếp
AA' là đường kính
Do đó: ΔACA' vuông tại C
=>AC vuông góc CA'
mà BH vuông góc AC
nên BH//A'C
Xét tứ giác BHCA' có
BH//CA'
BA'//CH
Do đó: BHCA' là hình bình hành
A B C I K H D M O N
a, C thuộc đường tròn đk AD (gt) => ^ACD = 90 => AC _|_ CD mà có BH _|_ AC => CD // BH
B thuộc đường tròn đk AD (gt) => ^ABD = 90 => AB _|_ BD mà có CH _|_ AB => BD // CH
=> BHCD là hình bình hành
b, có BHCD là hình bình hành => M là trung điểm của HD
Có O là trung điểm của AD do AD là đường kính
=> MO là đường trung bình của tam giác AHD
=> MO = 1/2AH
=> AH = 2MO
c, Gọi AM cắt HO tại N
=> N là trọng tâm của tam giác AHD
=> AN = 2/3AM
mà có AM là đường trung tuyến của tam giác ABC
=> H là trọng tâm của tam giác ABC
ờm câu c cũng không chắc lắm