\(a,b,c,d\in Z\) . Biết a+b=c+d và ab+1=cd. CMR : c=d

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

ta có a+ b = c + d

=> b.(a+b) = b(c+d) => a.b + b2 = bc + bd mà ab = cd + 1 nên

cd + 1 + b2 = bc + bd => bc - cd + bd - b2 = 1 => c(b - d) + b.(d - b) = 1 => (c - b)(b - d) = 1 . Vì a, b, c, d nguyên nên c - b và b - d cũng nguyên. do đó c - b = b - d = 1 hoặc c - b = b -d = -1

c - b = b - d => c + d = 2.b Mà c + d = a+ b => 2.b = a+ b => b = a => đpcm

27 tháng 7 2017

Từ a+b = c+d => a=c+d-b Từ 2 điều này => (c+d-b).b+1=cd

Mà ab+1=cd cb+db-\(b^2\)+1=cd

=> cb+db-\(b^2\)-cd=-1

Hay \(b^2\)-cd-cb-db=1

=> ( \(b^2\)-cb)-(db-cd)=1

=> b(b-c)-d(b-c)=1

=> (b-c).(b-d)=1

Vì a,b,c,d \(\in\) Z => \(\left\{{}\begin{matrix}b-c\in Z\\b-d\in Z\end{matrix}\right.\)

=> b-c=b-d=1

Hoặc b-c=b-d=-1

=> c=d hoặc d=c

Vậy c=d(ĐPCM)

14 tháng 7 2016

1. 11n+2 + 122n+1

= 11n. 121 + 144n.12

=11n.(133-12) + 144n.12

= 11n.133 + 12(144n - 11n)

11n.133 chia het cho 133

144n-11chia hết cho 144-11=133

15 tháng 7 2016

Theo tớ chỗ 144^n -11^n phải sửa thành 133^n+11^n.Cám ơn cậu đã giúp twos giải toán.

10 tháng 7 2018

Ta có : \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta có : \(\frac{a\cdot b}{cd}=\frac{bk\cdot b}{dk\cdot d}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\)

Ta lại có : \((\frac{a-b}{c-d})^2=\frac{k^2\cdot b^2-b^2}{k^2\cdot d^2-d^2}=\frac{b^2(k-1)}{d^2(k-1)}=\frac{b^2}{d^2}\)

Vậy : \((\frac{a-b}{c-d})^2=\frac{ab}{cd}\)

10 tháng 7 2018

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a}{c}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}=\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)

                                                                       đpcm

11 tháng 4 2017

a) Giải:

Ta có:

\(ab-ac+bc-c^2=-1\)

\(\Rightarrow a\left(b-c\right)+c\left(b-c\right)=-1\)

\(\Rightarrow\left(b-c\right)\left(a+c\right)=-1\)

Suy ra trong hai thừa số \(\left(b-c\right);\left(a+c\right)\) có một thừa số bằng \(1\)

Thừa số kia bằng \(-1\), nghĩa là chúng đối nhau

\(\Rightarrow b-c=-\left(a+c\right)\) Hay \(b-c=-a-c\)

Suy ra \(b=-a\) tức \(a\)\(b\) là hai số đối nhau

Vậy \(a\)\(b\) là hai số đối nhau (Đpcm)

b) Giải:

Ta có:

Từ \(a+b=c+d\Rightarrow d=a+b-c\)

\(ab\) là số liền sau của \(cd\) nên \(ab-cd=1\)

\(\Rightarrow ab-c\left(a+b-c\right)=1\)

\(\Rightarrow ab-ac-bc+c^2=1\)

\(\Rightarrow a\left(b-c\right)-c\left(b-c\right)=1\)

\(\Rightarrow\left(b-c\right)\left(a-c\right)=1\)

Suy ra \(a-c=b-c\) (vì cùng bằng \(1\) hoặc \(-1\))

Hay \(a=b\) (Đpcm)

9 tháng 6 2018

Ta có : a +b = c+d

=> d = a+b-c

Vì ab là số liền sau của cd nên ab -cd = 1

Mà d = a+b-c nên ta có :

ab-c.(a+b-c) = 1

=> ab -ac - bc + c2

= > a(b-c)-c(b-c) = 1

=> ( a - c ) (b - c) = 1

=> a-c = b-c

=> a=b

Vậy a = b

~~~~~~~~~~~~Chucs bạn học tốt nha ~~~~~~~~~~~~~~~

25 tháng 3 2020

ĐCM vãi cả Please sigh

\(a^2+ab+b^2=c^2+cd+d^2\)

\(\Leftrightarrow\left(a+b\right)^2-ab=\left(c+d\right)^2-cd\)

\(\Leftrightarrow\left(a+b\right)^2-\left(c+d\right)^2=ab-cd\)

\(\Leftrightarrow\left(a+b-c-d\right)\left(a+b+c+d\right)=ab-cd\)

Giả sử a+b+c+d là số nguyên tố

Đặt \(a+b+c+d=p\Rightarrow a+b+c\equiv-d\left(modp\right)\)

Mặt khác:

\(ab-cd\equiv0\left(modp\right)\Rightarrow ab+c\left(a+b+c\right)\equiv0\left(modp\right)\Rightarrow\left(a+c\right)\left(b+c\right)\equiv0\left(modp\right)\)

\(\Rightarrow a+c\equiv b+c\equiv0\left(modp\right)\) ( vô lý nha )

Vậy a+b+c+d là hợp số,nhớ trước có sol khá ngắn mà quên mất tiêu

23 tháng 6 2018

Bài 1:

Ta có:

\(\left(x-7\right)\left(xy+1\right)=9\)

Ta có bảng:

x - 7 1 -1 3 -3 9 -9
x 8 6 10 4 16 -2
xy + 1 9 -9 3 -3 1 -1
y 1 -5/3 1/5 -1 0 1
nhận loại loại nhận nhận nhận

Vậy ...