Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 11n+2 + 122n+1
= 11n. 121 + 144n.12
=11n.(133-12) + 144n.12
= 11n.133 + 12(144n - 11n)
11n.133 chia het cho 133
144n-11n chia hết cho 144-11=133
Ta có : \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Ta có : \(\frac{a\cdot b}{cd}=\frac{bk\cdot b}{dk\cdot d}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\)
Ta lại có : \((\frac{a-b}{c-d})^2=\frac{k^2\cdot b^2-b^2}{k^2\cdot d^2-d^2}=\frac{b^2(k-1)}{d^2(k-1)}=\frac{b^2}{d^2}\)
Vậy : \((\frac{a-b}{c-d})^2=\frac{ab}{cd}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{c}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}=\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)
đpcm
a) Giải:
Ta có:
\(ab-ac+bc-c^2=-1\)
\(\Rightarrow a\left(b-c\right)+c\left(b-c\right)=-1\)
\(\Rightarrow\left(b-c\right)\left(a+c\right)=-1\)
Suy ra trong hai thừa số \(\left(b-c\right);\left(a+c\right)\) có một thừa số bằng \(1\)
Thừa số kia bằng \(-1\), nghĩa là chúng đối nhau
\(\Rightarrow b-c=-\left(a+c\right)\) Hay \(b-c=-a-c\)
Suy ra \(b=-a\) tức \(a\) và \(b\) là hai số đối nhau
Vậy \(a\) và \(b\) là hai số đối nhau (Đpcm)
b) Giải:
Ta có:
Từ \(a+b=c+d\Rightarrow d=a+b-c\)
Vì \(ab\) là số liền sau của \(cd\) nên \(ab-cd=1\)
\(\Rightarrow ab-c\left(a+b-c\right)=1\)
\(\Rightarrow ab-ac-bc+c^2=1\)
\(\Rightarrow a\left(b-c\right)-c\left(b-c\right)=1\)
\(\Rightarrow\left(b-c\right)\left(a-c\right)=1\)
Suy ra \(a-c=b-c\) (vì cùng bằng \(1\) hoặc \(-1\))
Hay \(a=b\) (Đpcm)
ĐCM vãi cả Please sigh
\(a^2+ab+b^2=c^2+cd+d^2\)
\(\Leftrightarrow\left(a+b\right)^2-ab=\left(c+d\right)^2-cd\)
\(\Leftrightarrow\left(a+b\right)^2-\left(c+d\right)^2=ab-cd\)
\(\Leftrightarrow\left(a+b-c-d\right)\left(a+b+c+d\right)=ab-cd\)
Giả sử a+b+c+d là số nguyên tố
Đặt \(a+b+c+d=p\Rightarrow a+b+c\equiv-d\left(modp\right)\)
Mặt khác:
\(ab-cd\equiv0\left(modp\right)\Rightarrow ab+c\left(a+b+c\right)\equiv0\left(modp\right)\Rightarrow\left(a+c\right)\left(b+c\right)\equiv0\left(modp\right)\)
\(\Rightarrow a+c\equiv b+c\equiv0\left(modp\right)\) ( vô lý nha )
Vậy a+b+c+d là hợp số,nhớ trước có sol khá ngắn mà quên mất tiêu
ta có a+ b = c + d
=> b.(a+b) = b(c+d) => a.b + b2 = bc + bd mà ab = cd + 1 nên
cd + 1 + b2 = bc + bd => bc - cd + bd - b2 = 1 => c(b - d) + b.(d - b) = 1 => (c - b)(b - d) = 1 . Vì a, b, c, d nguyên nên c - b và b - d cũng nguyên. do đó c - b = b - d = 1 hoặc c - b = b -d = -1
c - b = b - d => c + d = 2.b Mà c + d = a+ b => 2.b = a+ b => b = a => đpcm
Từ a+b = c+d => a=c+d-b Từ 2 điều này => (c+d-b).b+1=cd
Mà ab+1=cd cb+db-\(b^2\)+1=cd
=> cb+db-\(b^2\)-cd=-1
Hay \(b^2\)-cd-cb-db=1
=> ( \(b^2\)-cb)-(db-cd)=1
=> b(b-c)-d(b-c)=1
=> (b-c).(b-d)=1
Vì a,b,c,d \(\in\) Z => \(\left\{{}\begin{matrix}b-c\in Z\\b-d\in Z\end{matrix}\right.\)
=> b-c=b-d=1
Hoặc b-c=b-d=-1
=> c=d hoặc d=c
Vậy c=d(ĐPCM)