K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

GIỜ BÀI NÀY KHÔNG CÒN GIAO LƯU NỮA

(1) (M+1)^2 -2m=m^2 +1 >=0 moi m => (1) được c/m

(2) x1^2 +x^2 =12

=> 4(m+1)^2 -4m =12

m^2+m+1=3 => m=1, -2

=> m

(3) từ  (2)  GTNN A=3/4 khi x=-1/2

có thể sai đừng tin

2 tháng 5 2016

kh biết

13 tháng 4 2017

*,với m=-2 thì bạn thay vào pt rồi giải như thường nha

*,\(\Delta\)=[-2(m+1)]2-4(2m-4)=4(m2+2m+1)-8m+16=4m2+8m +4-8m+16=4m2+20>0

=> phương trình luôn có 2 nghiệm phân biệt

*, theo hệ thức Vi et x1+x2=2(m+1);x1x2=2m-4

Ta có A=(x1+x2)2-2x1x2

Bạn thay vào rồi tính ra đc A=4m2+4m +12=(2m)2+4m+1+11=(2m+1)2+11 lớn hơn hoặc = 11

dấu = xảy ra khi 2m+1=0=> m=-1/2

1 tháng 8 2019

\(\Delta=4m^2-4\left(2m-1\right)=4m^2-8m+4=\left(2m-2\right)^2\ge0\)

Do đó pt luôn có nghiệm

Theo Vi-ét :

\(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-1\end{matrix}\right.\)

Ta có : \(A=x_1^2x_2+x_1x_2^2\)

\(A=x_1x_2\left(x_1+x_2\right)\)

\(A=\left(2m-1\right)\cdot\left(-2m\right)\)

\(A=-4m^2+2m\)

\(A=-4\left(m^2-\frac{1}{2}m\right)\)

\(A=-4\left(m^2-2\cdot m\cdot\frac{1}{4}+\frac{1}{16}-\frac{1}{16}\right)\)

\(A=\frac{1}{4}-4\left(m-\frac{1}{4}\right)^2\le\frac{1}{4}\forall m\)

Dấu "=" xảy ra \(\Leftrightarrow m=\frac{1}{4}\)

Ta có : \(x^2-2\left(m-1\right)x+2m-5=0\left(a=1;b=-2m+2;c=2m-5\right)\)

\(\Delta=\left(-2m+2\right)^2-4\left(2m-5\right)=-4m^2+4-8m+20=4m^2-8m+24\ge0\)

Để phương trình có 2 nghiệm thì : \(4m^2-8m+24\ge0\)

Áp dụng hệ thức Vi et ta có : \(x_1+x_2=2m-2;x_1x_2=2m-5\)

Theo bài ra ta có : \(x_1^2\left(1-x_2\right)+x_2^2\left(1-x_1^2\right)=-8\)

\(\Leftrightarrow x_1^2-x_1^2x_2+x_2^2-x_1^2x_2^2=-8\)

Tự lm nốt 

mk thấy trên mạng đề thế này : \(x_1^2\left(1-x_2^2\right)+x_2^2\left(1-x_1^2\right)=-8\)