Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2-->8: 4CS
10-->98: 45.2=90CS
100-->998: 450.3=1350CS
1000--> ?: ?.4=?CS
Số cuối cùng của dãy là:
{[(2016-4-90-1350):4]-1}.2+1000=1284
=>CS thứ 2016 của dãy là 4
\(\left(3n\right)^{100}\\ =3^{100}.n^{100}\\ =\left(3^4\right)^{25}.n^{100}\\ =81^{25}.n^{100}⋮81\)
Vậy \(\left(3n\right)^{100}⋮81\)
Chúc em học tốt!
Nếu là z+x thì mik biết làm nè:
Đặt x-y=2011(1)
y-z=-2012(2)
z+x=2013(3)
Cộng (1);(2);(3) lại với nhau ta được :
2x=2012=>x=1006
Từ (1) => y=-1005
Từ (3) => z=1007
Tuy có vẻ hơi muộn nhưng thôi
Nếu A là số tự nhiên ⇒ \(\dfrac{1}{10}\left(7^{2004}-3^{92^{94}}\right)\in N\)
\(\Rightarrow7^{2004}-3^{92^{94}}⋮10\)
Thật vậy, ta có :
72004 với lũy thừa là 2004 ⋮ 4
⇒ 72004 = ( .......... 9 )
392^94 với lũy thừa là 9294 mà 92 ⋮ 4 ⇒ 9294 ⋮ 4
⇒ 392^94 = ( .......... 9 )
⇒ 72004 - 392^94 = ( .......... 9 ) - ( ............ 9) = ( ........... 0 ) ⋮ 10
⇒ \(\dfrac{1}{10}\left(7^{2004}-3^{92^{94}}\right)\in N\)
A=1/10.(72004-392^94) là số tự nhiên.
a: \(\dfrac{-24}{-6}=\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}=4\)
=>x=12; y2=1; z3=-8
=>x=12; \(y\in\left\{1;-1\right\}\); z=-2
b: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{y}{-3}=\dfrac{z}{-17}=\dfrac{t}{9}\)
=>x/5=y/-3=z/-17=t/9=-2
=>x=-10; y=6; z=34; t=-18
\(B=\left\{x\in N\text{|}x=10k\left(k\in N\right)\right\}\)
\(C=\left\{x\in N\text{|}x>101\text{|}x=2k\left(k\in N\right)\right\}\)
\(C=\left\{x\in N\text{|}x=k^3\left(k\in N\text{*}\right)\right\}\)
Chúc bạn học tốt!!
\(=>9x+2=60:3\)
\(=>9x+2=20\)
\(=>9x=20-2\)
\(=>9x=18\)
\(=>x=18:2=2\)
Vậy số cần tìm là 2
CHÚC BẠN HỌC TỐT............
( 9x + 2 ) . 3 = 60
( 9x + 2 ) = 60 : 3
9x + 2 = 20
9x = 20 - 2
9x =18
x = 18 : 9
x = 2
Đây bạn
Viết lại bài toán cần chứng minh
13+23+33+..n3=(1+2+3+...+n)213+23+33+..n3=(1+2+3+...+n)2
Với n=1;n=2n=1;n=2 thì đẳng thức hiển nhiên đúng, hay chính là câu a,b đó
Giả sử đẳng thức đúng với n=kn=k
Tức 13+23+33+...k3=(1+2+3+4..+k)213+23+33+...k3=(1+2+3+4..+k)2
Ta sẽ chứng minh nó đúng với n=k+1n=k+1
Viết lại đẳng thức cần chứng minh 13+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)213+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)2 (*)
Mặt khác ta có công thức tính tổng sau 1+2+3+4+...+n=n(n+1)21+2+3+4+...+n=n(n+1)2
⇒(1+2+3+4+...+n)2=(n2+n)24⇒(1+2+3+4+...+n)2=(n2+n)24
Vậy viết lại đẳng thức cần chứng minh
(k2+k)24+(k+1)3=(k2+3k+2)24(k2+k)24+(k+1)3=(k2+3k+2)24
⇔(k2+3k+2)2−(k2+k)2=4(k+1)3⇔(k2+3k+2)2−(k2+k)2=4(k+1)3
Bằng biện pháp "nhân tung tóe", đẳng thức cần chứng minh tuơng đuơng
⇔4k3+12k2+12k+4=4(k+1)3⇔4k3+12k2+12k+4=4(k+1)3
⇔4(k+1)3=4(k+1)3⇔4(k+1)3=4(k+1)3 ~ Đẳng thức này đúng.
Vậy theo nguyên lý quy nạp ta có đpcm.
Giải hẳn hoi nha các bạn, đừng có viết luôn dạng tổng quát, nha
Gọi số cần tìm là \(n\) \(\left(n\in N\right)\)
Vì \(n⋮5\) và \(n⋮27\)
\(\Rightarrow n\) có chữ số tận cùng là \(0\) hoặc \(5\)
+) Xét \(n=\)*\(975\) chia hết cho \(9\) \(\Rightarrow\) *\(=6\). Thử lại \(6975\) \(⋮̸\) \(27\) \(\rightarrow loại\)
+) Xét \(n=\)*\(970\) chia hết cho \(9\) \(\Rightarrow\) *\(=2\) Thử lại \(2970⋮27\) (TM)
Vậy \(n=2970\) là giá trị cần tìm
~~Chúc bn học tốt!!~~
theo mk nghĩ là 27 = 3.9. C/m chia hết cho 27 thì c/m chia hết cho 3 và 9 nhưng mà ƯCLN(3,9)=3 kia mà. Bạn giải thích đoạn đó giúp mk đc ko?
Bài 1 :
VD tập hợp M có 4 tập hợp con có 1 phần tử là
{ 1 } ; { 2 } ; { 3 } ; { 4 }
\(\rightarrow\) Tập hợp M có số tập con có 3 phần tử là
{ 1 ; 2 ; 3 } ; { 1 ; 2 ; 4 } ; { 1 ; 3 ; 4 } ; { 2 ; 3 ; 4 }
\(\Rightarrow\) Tập hợp M có 4 tập hợp con có 3 phần tử
Bài 2 :
A = { 13 ; 14 }
hoặc A = { 13 ; 15 }
A = { 14 ; 15 }
Thế còn bài 3 thì sao bạn