K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

C A B D H

a, \(\Delta ABC\)\(\widehat{C}=90^o\).

Áp dụng pytago có: \(AB=\sqrt{AC^2+BC^2}=\sqrt{\left(12a\right)^2+\left(5a\right)^2}=13a\)

\(\Delta ABC\)\(\widehat{C}=90^o\)\(\Rightarrow\)\(\left\{{}\begin{matrix}\sin B=\dfrac{AC}{AB}=\dfrac{12a}{13a}=\dfrac{12}{13}\\cosB=\dfrac{BC}{AB}=\dfrac{5a}{13a}=\dfrac{5}{13}\end{matrix}\right.\)

Ta có: \(\dfrac{sinB+cosB}{sinB-cosB}=\dfrac{\dfrac{12}{13}+\dfrac{5}{13}}{\dfrac{12}{13}-\dfrac{5}{13}}=\dfrac{\dfrac{17}{13}}{\dfrac{7}{13}}=\dfrac{17}{7}\)

b, Có SABCD= \(\dfrac{CH.AB}{2}=\dfrac{CB.AC}{2}\Rightarrow CH.AB=BC.AC\Rightarrow CH=\dfrac{AC.BC}{AB}=\dfrac{12a.5a}{13a}=\dfrac{60a}{13}\approx4,615a\)

13 tháng 9 2019

bn chờ đến 11h30 đc ko 

1/ cho tam giác ABC vuông tại A , có đường cao AH , phân giác AD biết BD=15cm Dc=20cm Tính AH,AD làm tròn đến chữ số thập phân thứ 2 2/cho tam giác ABC vuông tại A ,đường cao AH ,Trung tuyến AM a) Biết BC=125cm , AB phần AC = 3 phần 4 Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền b) Biết AH=42cm , AB:AC=3:7 .Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền c) Biết AH=48cm...
Đọc tiếp

1/ cho tam giác ABC vuông tại A , có đường cao AH , phân giác AD biết BD=15cm Dc=20cm 
Tính AH,AD làm tròn đến chữ số thập phân thứ 2 
2/cho tam giác ABC vuông tại A ,đường cao AH ,Trung tuyến AM 
a) Biết BC=125cm , AB phần AC = 3 phần 4 Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền 
b) Biết AH=42cm , AB:AC=3:7 .Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền 
c) Biết AH=48cm , HB:HC=9:16 tính AB,AC,BC 
d) Biết AH:AM=40:41 Tính tỉ số AB phần Ac 
3/Hình thang ABCD có AB//CD và hai đường chéo vuông góc . Biết BD=15cm và dường cao hình thang bằng 12cm .Tính diện tích hình thang ABCD 

4/Cho tam giác ABC cân tại A có đường cao AH=32cm đường cao BK=38,4 cm 
a) tính các cạnh của tam giác ABC 
b) đường trung trục của AC cắt AH tai O tính OH

0
3 tháng 7 2017

Xét \(\Delta\)ABC cân tại A có :

AH là đường cao

\(\Rightarrow\)AH là đường trung tuyến

\(\Rightarrow\)H là trung điểm của BC

\(\Rightarrow\)BH = HC =\(\dfrac{BC}{2}\)\(\dfrac{16}{2}=8\)

Xét \(\Delta\)AHB vuông tại H có:

\(\cos\)B=\(\dfrac{BH}{AB}=\dfrac{8}{10}\)=0.8

\(\Rightarrow\Lambda B\approx37\)độ

Ta có : góc B = góc C (Tam giác ABC cân tại A)

Mà góc B\(\approx37\)độ

\(\Rightarrow\)góc C\(\approx\)37 độ

b, Xét \(\Delta\)ABC có :

góc BAC+gócACB+góc ABC=180

\(\Rightarrow\)góc BAC=106 độ

Xét \(\Delta\)AHB vuông tại H có :

\(AB^2=AH^2+HB^2\Rightarrow AH=6\)

Ta có \(AI=\dfrac{1}{3}AH\Rightarrow HI=\dfrac{2}{3}AH\)

\(\Rightarrow\)HI=4cm

Xét tam giác BDC có

\(HI\) song song CD

\(\Rightarrow\dfrac{HI}{CD}=\dfrac{BH}{CH}=\dfrac{8}{16}=\dfrac{1}{2}\)

\(CD=8cm\)

Xét tứ giác AHCD có :

AH song somg CD

\(\Rightarrow\)AHCD là hình thang

Diện tích hình thang AHCD là :

\(\dfrac{1}{2}\left(6+8\right)\times8=56cm^2\)

Diện tích AHB là :

\(\dfrac{1}{2}\times6\times8=24cm^2\)

Diện tích tứ giác ABCD là

\(56+24=80cm^2\)

10 tháng 11 2017

bạn ơi chỗ tỉ lệ pải là \(\dfrac{HI}{CD}=\dfrac{BH}{BC}\)

13 tháng 9 2016

AB=21/(3+4)x3=9 cm

AC=21-9=12cm

Tự kẻ hình bạn nhé =)))

Áp dụng định lí Pitago vào tam giác ABC , có

AB^2+AC^2=BC^2

=>thay số vào, tính được BC=15cm

Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:

AB^2=BHxBC

=>BH=81/15=5.4cm

=>CH=15-5.4=9.6cm

AH^2=BHxCH=5.4x9.6=51.84cm

16 tháng 7 2017

A B C D H

a,\(\frac{sinB+cosB}{sinB-cosB}=\frac{\frac{sinB}{cosB}+\frac{cosB}{cosB}}{\frac{sinB}{cosB}-\frac{cosB}{cosB}}=\frac{tanB+1}{tanB-1}\) (1)

doABCD co AD=BC=5a 

nen trong tam giac vuong ABC co \(tanB=\frac{12a}{5a}=\frac{12}{5}\)

thay vao (1) ta co\(\frac{\sin B+\cos B}{\sin B-\cos B}=\frac{\tan B+1}{\tan B-1}=\frac{\frac{12}{5}+1}{\frac{12}{5}-1}=\frac{17}{7}\)

b, áp dụng đl pitago vào tam giác vuông ABC có \(AB^2=AC^2+CB^2\Rightarrow AB=13a\)

áp dụng hệ thức lượng vào tam giác vuông ABC \(CH\cdot AB=AC\cdot AB\Rightarrow CH=\frac{12\cdot5}{13}=\frac{60}{13}\)