K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2019

Xét tam giác ABD và tam giác BDC

có \(\widehat{DAB}=\widehat{CBD}\)

\(\widehat{ABD}=\widehat{BDC}\)(so le trong, AB // CD)

nên tam giác ABD đồng dạng với tam giác DBC

2

Xét tam giác ADC có

M là trung điểm của AD

N là trung điểm của AC

suy ra MN là đường trung bình của tam giác ADC

nên MN // DC (1)

Xét tam giác ABC có

K là trung điểm của BC

N là trung điểm của AC

suy ra NK là đường trung bình của tam giác ABC

nên NK //AB 

mà AB // CD 

do đó NK // CD (2)

Từ (1), (2) và theo tiên đề ơ-clít ta có

NK trùng với MN

do đó M,N,K thẳng hàng

19 tháng 5 2019

Hình bạn tự vẽ nhé ! 

Câu 1: 

Xét tam giác ABD và tam giác DBC có

Góc DAB = góc CBD 

Góc ABD = góc BDC ( so le trong AB // CD )

nên tam giác ABD đồng dạng tam giác DBC

Câu 2:

Xét tam giác ADC có: 

M là trung điểm của AD

N là trung điểm của AC

=> MN là đường trung bình của tam giác ADC => MN // DC (1)

Xét tam giác ABC có: 

K là trung điểm của BC

N là trung điểm của AC

=> NK là đường trung bình của tam giác ABC => NK // AB 

mà AB / CD => NK // CD (2)

Từ (1) và (2) theo tiên đề Ơ - clit ta có: 

NK trùng với MN => M, N, K thẳng hàng ( đpcm ) 

2 tháng 9 2021

a) Xét tg DAB có AM=MD (gt)

                          DP=PB(gt)

=> MP là dg tb tg DAB => MP //AB          (1)

Xét tg BDC có BN=NC(gt)

                       DO=PB(gt)

=> PN là dg tb tg DBC=> PN//DC. Mà DC//AB ( hthang ABCD)

=> PN//AB.                                              (2)

Từ (1) và (2) => M,N,P thẳng hàng 

b) Xét tg ABC có BN=NC(gt)

                            NK//AB( MN//AB)

=> K td AC

C) xét tg ABCD có AM=MD(gt)

                                BN=NC(gt)

=> MN là dg tb tg ABCD => MN=(AB+CD)/2          (1)

ta có MP là dg tb tg ABD(cmt)=> MP=1/2AB=AB/2         (2)

 Ta có NK là dg tb tg ABC(cmt) =>NK=1/2AB=AB/2.       (3)

Mà ta có MN= MP+PK+NK                                              (4)

Từ (1)(2)(3)(4) suy ra

(AB+CD)/2 = AB/2+AB/2+PK

<=> (AB+CD-AB-AB)/2=PK

<=>(-AB+CD)/2=PK

=> (CD-AB):2=PK

 

a: Xét ΔDAB có

M là trung điểm của AD

P là trung điểm của BD

Do đó: MP là đường trung bình của ΔDAB

Suy ra: MP//AB

Xét hình thang ABCD có 

M là trung điểm của AD

N là trung điểm của BC

Do đó: MN là đường trung bình của hình thang ABCD

Suy ra: MN//AB//CD

Ta có: MN//AB

MP//AB

mà MN và MP có điểm chung là M

nên M,N,P thẳng hàng

b: Xét ΔABC có 

N là trung điểm của BC

NK//AB

Do đó: K là trung điểm của AC

19 tháng 9 2018

chân núi, chân đồi, chân bàn, chân ghế , chân trời ,....

19 tháng 9 2018

sorry mk tl nhầm câu nha ^^

10 tháng 3 2020

Bài 1:

A B C D O M N P Q

a) Xét tam giác AOD có M là trung điểm của AO (gt) Q là trung điểm của OD (gt)

\(\Rightarrow MQ//AD,MQ=\frac{1}{2}AD\left(tc\right)\left(1\right)\)

CMTT \(MN//AB,MN=\frac{1}{2}AB\left(2\right)\)

\(NP=\frac{1}{2}BC\left(3\right)\)

\(PQ=\frac{1}{2}DC\left(4\right)\)

Mà AB=BC=CD=DA (tc) (5)

Từ (1) ,(2) ,(3),(4) và (5)\(\Rightarrow MN=NP=PQ=MQ\)

Xét tứ giác MNPQ có \(MN=NP=PQ=MQ\left(gt\right)\)

\(\Rightarrow MNPQ\)là hình thoi ( dhnb)  (6)

Ta có: \(\hept{\begin{cases}MQ//AD\left(cmt\right)\\MN//AB\left(cmt\right)\end{cases}}\)mà \(AD\perp AB\)

\(\Rightarrow MQ\perp MN\)

\(\Rightarrow\widehat{QMN}=90^0\)(7) 

Từ (6) và (7) \(\Rightarrow MNPQ\)là hình vuông (dhnb )

b) Ta có\(MQ=\frac{1}{2}AD\left(cmt\right)\)

mà \(AD=16\left(cm\right)\)

\(\Rightarrow MQ=8\left(cm\right)\)

\(\Rightarrow S_{MNPQ}=8^2=64\left(cm^2\right)\)

\(\Rightarrow S_{ABCD}=16^2=256\left(cm^2\right)\)

Vậy diện tích phần trong của hình vuông ABCD nằm ngoài tứ giác MNPQ =\(256-64=192\left(cm^2\right)\)

10 tháng 3 2020

A B D C O K H

Kẻ \(BH\perp AD,CK\perp AD\)

\(\Rightarrow BH//CK\)

Ta có: \(\hept{\begin{cases}BH//CK\\BC//HK\end{cases}\Rightarrow BH=CK}\)( tc cặp đoạn chắn )

Xét tam giác ABD và tam giác ACD có:

2 đường cao BH,CK = nhau , đáy AD chung

\(\Rightarrow S_{ABD}=S_{ACD}\)

\(\Leftrightarrow S_{OAB}+S_{AOD}=S_{AOD}+S_{OCD}\)

\(\Leftrightarrow S_{OAB}=S_{OCD}\left(đpcm\right)\)

PS: có 1 tính chất học ở kì I lớp 8 á nhưng mình không biết cách giải thích sao nữa nên mình dùng cặp đoạn chắn

23 tháng 8 2020

a) Xét 2 tam giác ADB và BCD có:

góc DAB = góc DBC (gt)

góc ABD = góc BDC ( so le trong )

nên tam giác ADB đồng dạng với tam giác BDC.(1)

b) Từ (1) ta được AB/BC = DB/CD = AB/BD

hay ta có; AD/BC = AB/BD <==> 3,5/BC = 2,5/5

==> BC= 3,5*5/2,5 = 7 (cm)

ta cũng có: DB/CD = AB/BD <==> 5/CD = 2,5/5

==> CD = 5*5/2,5 =10 (cm)

c) Từ (1) ta được;

AD/BC = DB/CD = AB/BD hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .

ta nói tam giác ADB đồng giạc với tam giác BCD theo tỉ số đồng dạng là 1/2

mà tỉ số diện tích bằng bình phương tỉ số động dạng

do đó S ADB/ S BCD = (1/2)^2 = 1/4