K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2014

cho hình tam giác ABCD ư viết lại đề bài đi bạn

 

5 tháng 11 2014

câu 2

tam giác ABM bằng tam giác DBN (c.g.c) nên BM=BN và ABM=DBN ta có ABM+MBD=60 nên DBN+MBD=60 hay MBN =60 tam giác MBN đều

 

a: Xét tứ giác ANDM có

\(\widehat{AND}=\widehat{AMD}=\widehat{MAN}=90^0\)

Do đó: ANDM là hình chữ nhật

30 tháng 10 2019

Bài 1

A A A B B B C C C H H H M M M D D D I I I a/Xét tứ giác BHCD có M đồng thời là trung điểm của cả HD và BC 

Do đó BHCD là hình bình hành \(\Rightarrow BH//CD,CH//BD\)

Mặt khác vì ta có H là trực tâm của tam giác ABC nên \(BH\perp AC,CH\perp AB\)

Suy ra \(BD\perp AB,CD\perp AC\Rightarrow\Delta ABD,\Delta ACD\)là tam giác vuông 

b/Xét \(\Delta ABD,\Delta ACD:\widehat{ABD}=\widehat{ACD}=90^0\);I là trung điểm của cạnh huyền chung AD

Suy ra \(IA=IB=IC=ID\)

30 tháng 10 2019

Bài 2 α = 60° α = 60° α = 60° A A A B B B C C C D D D E E E a/Vì AD=CD(gt) nên D nằm trên trung trực của đoạn AC suy ra \(\widehat{DAC}=\widehat{ECA}=90^0-60^0=30^0\)

Suy ra \(\widehat{BAD}=90^0+\widehat{DAC}=120^0\)

b/Trước hết ta thấy ABCD đã là hình thang,nên ta đi chứng minh \(\widehat{BCD}=\widehat{ABC}=60^0\)

Ta có \(\widehat{BCD}=\widehat{DCA}+\widehat{ACB}=\widehat{DAC}+30^0=30^0+30^0=60^0\)

Vậy ABCD là hình thang cân

c/Ta có \(\Delta BCE:AE=BE,\widehat{ABE}=60^0\Rightarrow AE=BE=AB\)

\(\widehat{ADE}=\frac{1}{2}.\widehat{ADC}=60^0;\widehat{BAD}=120^0=\widehat{BED}\)

Suy ra ABED là hình bình hành 

Mà ta còn có AB=EB 

Vậy ABED là hình thoi

Bài 1:Cho tam giác ABC, điểm I nằm giữa B và CQua I vẽ đường thẳng song song vs AB, cắt AC ở HQua I vẽ đường thẳng song song vs AC, cắt AB ở Ka) Tứ giác AHIK là hình gì?b) Điểm I ở vị trí nào trên cạnh BC thì tứ giác AHIK là hình thoi?c) Tam giác ABC có điều kiện gì thì tứ giác AHIK là hcn?Bài 2: Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng vs d qua AB, E là...
Đọc tiếp

Bài 1:Cho tam giác ABC, điểm I nằm giữa B và C

Qua I vẽ đường thẳng song song vs AB, cắt AC ở H

Qua I vẽ đường thẳng song song vs AC, cắt AB ở K

a) Tứ giác AHIK là hình gì?

b) Điểm I ở vị trí nào trên cạnh BC thì tứ giác AHIK là hình thoi?

c) Tam giác ABC có điều kiện gì thì tứ giác AHIK là hcn?

Bài 2: Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng vs d qua AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng vs D qua AC, F là giao điểm của DN và AC

a) Tứ giác AEDF là hình gì? Vì sao?

b) Các tứ giác ADBM, ADCN là hình gì? Vì sao?

c) CMR: M đối xứng vs N qua A

d) Tam giác vuông ABC có điều kiện gì thì tứ giác ADEF ,là hình vuông

Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. gọi D là điểm đối xứng vs H qua AB, gọi E là điểm đx vs H qua Ac

a) CM D đx vs E qua A

b) Tam giác DHE là tam giác gì? Vì sao? 

c) Tứ giác BNEC là hình gì? Vì sao

d) CMR BC= BD+CE

Bài 3: Cho tứ giác ABCD. Gọi E,F,G,H theo thứ tự là trung điểm của AB, AC, DC, DB. Tìm đk của tứ giác ABCD để EFGH là:

a) Hình chứ nhật  ; b) Hình thoi   ; c) hình vuông   

Bài 4: Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi H là trung điểm GB, K là trung điểm của GC.

a) CMR: Tứ giác DEHK là hbh

b) Tam giác ABC có đk j thì tứ giác DEHK là hcn

c) Nếu các đường trung tuyến BN và CE vuông góc vs nhau thì tứ giác DEHK là hình j?

0
Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với ACBài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF...
Đọc tiếp

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD 
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

0