K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.a) Chứng minh tứ giác MEPF là hình thoi.b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàngBài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻđường thẳng...
Đọc tiếp

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

5
2 tháng 3 2020

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

2 tháng 3 2020

Tối về mình làm nốt  nhé giờ mình có việc 

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F saocho AE=EF=FC.a) Tứ giác BEDF là hình gì?b) Chứng minh tam giác CFD= tam giác AEBc) Chứng minh tam giác CFB= tam giác EADBài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.a) Xác định D sao cho BDCA là hình vuông.b) Tính độ dài DA.c) Tính diện tích ABCD.Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.a) Xác định O để ABCD là hình bình...
Đọc tiếp

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh tam giác CFD= tam giác AEB
c) Chứng minh tam giác CFB= tam giác EAD

Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?

Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho DBAM. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.

Mong mn giúp mk vs ah

1

đây là nhóm hỏi những bài khó chứ không phải nơi chép bài của những bạn lười nhé

29 tháng 10 2021

Bạn nói hay đó

Đc của ló

 

a: Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

AD là phân giác của góc FAE

Do đó: AEDF là hình vuông

b: ΔDEB vuông tại E

mà EM là trung tuyến

nên EM=MD

=>góc EMD=2*góc ABC

 

Bài 2:

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trug điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

b: Để AMCK là hình vuông thì AM=CM

=>AM=BC/2

=>ΔABC vuông tại A

Bài 1: Tứ giác ABCD có AB=BC=CD và Góc D+B=180 độa, Chứng minh AC là phân giác góc Ab, Tứ giác ABCD là hình gì? tại sao?Bài 2: Cho hình thang ABCD (AB//CD). M là trung điểm của AD sao cho CM là phân giác góc C. Biết MB=6cm, MC=8cma, BC=?b, So sánh khoảng cách từ M đến BC và đường cao hình thang.Bài 3: Cho tứ giác ABCD, AC là phân giác góc A. Gọi I,K lần lượt là trung điểm của AD,BC. IK cắt AC tại S.a, Cmr: S là...
Đọc tiếp

Bài 1: Tứ giác ABCD có AB=BC=CD và Góc D+B=180 độ
a, Chứng minh AC là phân giác góc A
b, Tứ giác ABCD là hình gì? tại sao?
Bài 2: Cho hình thang ABCD (AB//CD). M là trung điểm của AD sao cho CM là phân giác góc C. Biết MB=6cm, MC=8cm
a, BC=?
b, So sánh khoảng cách từ M đến BC và đường cao hình thang.
Bài 3: Cho tứ giác ABCD, AC là phân giác góc A. Gọi I,K lần lượt là trung điểm của AD,BC. IK cắt AC tại S.
a, Cmr: S là trung điểm của AC
b, Từ C kẻ Cx//AD. Cx cắt AB tại M. Tứ giác ABCD là hình gì? tại sao?
Bài 4: Cho tứ giác ABCD gọi E,F lần lượt là trung điểm của BC và AD.
Cmr:
a,EF<(AB+CD)/2
b, Tứ giác ABCD<=>EF<(AB+CD)/2
Bài 5: Cho hình thang ABCD (AB//CD), AB<CD. AC cắt BD tại O. Biết gócDOC=60 độ
AD=6cm. P,Q,R lần lượt là trung điểm của OA,OD. Tính chu vi tam giác PQR
Bài 6: Cho tam giác ABC, D thuộc AB sao cho BD=1/4 AB, E là trung điểm vủa BC. Đường thẳng DE cắt AC tại F. Cmr: CF=1/2AC.
Các bạn xem làm giúp mình với nhé  mình sắp phải nộp rồi 

 
1

Bài 1: 

a: Xét tứ giác ABCD có góc B+góc D=180 độ

nên ABCD là tứ giác nội tiếp

=>góc BAC=góc BDC và góc DAC=góc DBC

mà góc CBD=góc CDB

nên góc BAC=góc DAC

hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC

=>góc BCA=góc CAD

=>BC//AD

=>ABCD là hình thang

mà góc B=góc BCD

nên ABCD là hình thang cân

Bài 1:Cho tam giác ABC, điểm I nằm giữa B và CQua I vẽ đường thẳng song song vs AB, cắt AC ở HQua I vẽ đường thẳng song song vs AC, cắt AB ở Ka) Tứ giác AHIK là hình gì?b) Điểm I ở vị trí nào trên cạnh BC thì tứ giác AHIK là hình thoi?c) Tam giác ABC có điều kiện gì thì tứ giác AHIK là hcn?Bài 2: Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng vs d qua AB, E là...
Đọc tiếp

Bài 1:Cho tam giác ABC, điểm I nằm giữa B và C

Qua I vẽ đường thẳng song song vs AB, cắt AC ở H

Qua I vẽ đường thẳng song song vs AC, cắt AB ở K

a) Tứ giác AHIK là hình gì?

b) Điểm I ở vị trí nào trên cạnh BC thì tứ giác AHIK là hình thoi?

c) Tam giác ABC có điều kiện gì thì tứ giác AHIK là hcn?

Bài 2: Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng vs d qua AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng vs D qua AC, F là giao điểm của DN và AC

a) Tứ giác AEDF là hình gì? Vì sao?

b) Các tứ giác ADBM, ADCN là hình gì? Vì sao?

c) CMR: M đối xứng vs N qua A

d) Tam giác vuông ABC có điều kiện gì thì tứ giác ADEF ,là hình vuông

Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. gọi D là điểm đối xứng vs H qua AB, gọi E là điểm đx vs H qua Ac

a) CM D đx vs E qua A

b) Tam giác DHE là tam giác gì? Vì sao? 

c) Tứ giác BNEC là hình gì? Vì sao

d) CMR BC= BD+CE

Bài 3: Cho tứ giác ABCD. Gọi E,F,G,H theo thứ tự là trung điểm của AB, AC, DC, DB. Tìm đk của tứ giác ABCD để EFGH là:

a) Hình chứ nhật  ; b) Hình thoi   ; c) hình vuông   

Bài 4: Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi H là trung điểm GB, K là trung điểm của GC.

a) CMR: Tứ giác DEHK là hbh

b) Tam giác ABC có đk j thì tứ giác DEHK là hcn

c) Nếu các đường trung tuyến BN và CE vuông góc vs nhau thì tứ giác DEHK là hình j?

0
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC           b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H...
Đọc tiếp

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

2
14 tháng 7 2018

Bài 1 nếu chứng minh cũng chỉ được góc EMD= 2 góc AEM thôi

14 tháng 7 2018

chứng minh kiểu gì vậy