K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2019

O C D E F P A B

(Điểm P nằm trong hay nằm ngoài (O;2R) cũng không vấn đề gì nhé, mình vẽ như vậy cho hình đỡ to)

a) Xét hai đường tròn (O;R) và (P) cắt nhau tại hai điểm E,F. Suy ra OP là trung trực của EF

Tương tự OP là trung trực của CD. Do đó CD và EF có chung đường trung trực. Vậy CD // EF (đpcm).

b) Có OA = R; OC = 2R, A thuộc OC nên A là trung điểm OC

Mà OC là một dây của (P) nên PA vuông góc OA. Tương tự PB vuông góc với OB

Vậy PA,PB là hai tiếp tuyến của (O;R) (đpcm).

Có lẽ là đề nhầm (Đề này trong tuyển tập "Bộ đề hính học lớp 9). Đúng ra phải là BE cắt AC tại M

DFCE nội tiếp

=>góc DFE=góc DCE=90 độ

ΔDOF đồng dạng với ΔDAB

=>DO/DA=DF/DB(1)

ΔOAB vuông tại  B 

=>OA^2=BO^2+BA^2

=>AB=Rcăn 3

=>DA=R căn 7

(1) =>R/Rcăn7=DF/2R

=>DF=2R/căn 7

Kẻ BH vuông góc DA

\(S_{ABD}=\dfrac{1}{2}\cdot BD\cdot AB=\dfrac{1}{2}\cdot BH\cdot DA\)

=>BH=2*Rcăn 3/căn 7

=>\(S_{BDF}=\dfrac{2R^2\sqrt{3}}{7}\)