K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2019

\(A=\frac{n+10}{2n-8}=\frac{n-4+14}{2\left(n-4\right)}=\frac{\left(n-4\right)}{2\left(n-4\right)}+\frac{14}{2\left(n-4\right)}\)

\(=\frac{1}{2}+\frac{14}{2n-8}\)

\(\Rightarrow2n-8\in U\left(14\right)=\left\{1;2;7;14;-1;-2;-7;-14\right\}\)

\(\Rightarrow2n\in\left\{9;10;15;22;7;6;1;-6\right\}\)

\(\Rightarrow n\in\left\{5;11;3\right\}\)( VÌ số tự nhiên n có giá trị là 1 số nguyên)

4 tháng 4 2019

đẻ A là số nguyên  

=> (n+10) chia hết cho (2n-8)

vì (n+10) chia hết cho 2n+8

=> 2(n+10) chia hết cho 2n+8 hay 2n+20 chia hết cho 2n+8

vì 2n+20 chia hết cho 2n+8

và 2n+8  chia hết cho 2n+8

=> (2n+20) - (2n+8) chia hết cho 2n+8

hay 12 chia hết cho 2n+8 

=> 2N+8 THUỘC ( 1,2,3,4,6,12)

=> 2N THUỘC (-7,-6,-5,-4,-2,4) VÌ 2N LÀ SỐ CHẴN  

=>2N THUỘC (-6,-4,-2,4)

=> N THUỘC (-3,-2,-1,2)

VẬY N THUỘC (-3,-2,-1,2)

16 tháng 3 2018

Giải từng bài 

Bài 1 : 

Ta có : 

\(\frac{23+n}{40+n}=\frac{3}{4}\)

\(\Leftrightarrow\)\(4\left(23+n\right)=3\left(40+n\right)\)

\(\Leftrightarrow\)\(92+4n=120+3n\)

\(\Leftrightarrow\)\(4n-3n=120-92\)

\(\Leftrightarrow\)\(n=28\)

Vậy số cần tìm là \(n=28\)

Chúc bạn học tốt ~ 

16 tháng 3 2018

Bài 2 : 

\(a)\) Gọi \(ƯCLN\left(12n+1;30n+2\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(12n+1;30n+2\right)=\left\{1;-1\right\}\)

Vậy \(A=\frac{12n+1}{30n+2}\) là phân số tối giản với mọi giá trị nguyên n 

Chúc bạn học tốt ~ 

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìmgiá trị lớn nhất đó.Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn...
Đọc tiếp

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.

Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìm

giá trị lớn nhất đó.
Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.
Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn nhất.
Bài tập 7. Tìm giá trị nhỏ nhất của của biểu thức sau: A= \(\frac{6\cdot n-1}{3\cdot n-2}\) (với n là số nguyên )

Bài tập 8: cho phân số A= \(\frac{n+1}{n-3}\) . Tìm n để có giá trị lớn nhất.
Bài tập 9: ho phân số: p= \(\frac{6\cdot n+5}{3\cdot n+2}\) (n \(\in\)  N Với giá trị nào của n thì phân số p
có giá trị lớn nhất? tìm giá trị lớn nhất đó.

0
19 tháng 5 2017

b) Để A là phân số 

=> n - 2 \(\ne0\)

=> n \(\ne2\)

b) Để A là số nguyên

=> -5 chia hết cho n - 2

=> n - 2 thuộc Ư(-5) = {1 ; -1 ; 5; - 5}

Ta có bảng sau :

n - 21-15-5
n317-3
19 tháng 5 2017

Để A là p/số thì n-2 \(\ne\)

=> Nếu n-2=0 thì 

n-2=0

n=2+0

n=2

=>n\(\ne\) 2

b/ Để A số nguyên thì 

5\(⋮\) n-2

=> n-2\(\in\) Ư(5)

n-2=1                        

n=1+2

n=3

 n-2=-1

n=-1+2

n=1 

tự làm tiếp

18 tháng 6 2020

1) Đặt: ( n + 9 ;  n - 6 ) = d  với d là số tự nhiên 

=> \(\hept{\begin{cases}n+9⋮d\\n-6⋮d\end{cases}}\Rightarrow\left(n+9\right)-\left(n-6\right)⋮d\Rightarrow15⋮d\)

=> d \(\in\)Ư ( 15 ) = { 1; 3; 5; 15 }

=> d có thể rút gọn cho số 3; 5; 15 

18 tháng 6 2020

2) Đặt: ( 18n + 3 ; 23n + 7 ) = d 

=> \(\hept{\begin{cases}18n+3⋮d\\23n+7⋮d\end{cases}}\Rightarrow23\left(18n+3\right)-18\left(23n+7\right)⋮d\)

=> \(57⋮d\)

=> \(d\inƯ\left(57\right)=\left\{1;3;19;57\right\}\)

=> \(\frac{18n+3}{\text{23n+7}}\) rút gọn được  khi d = 3; d = 19 ; d = 57 

Vì rút gọn được cho 57 thì sẽ rút gọn được cho 3 và cho 19 

Nên mình chỉ cần xác định n với d = 3 và d =19 

+) Với d = 3 

\(\hept{\begin{cases}18n+3⋮3\\23n+7⋮3\end{cases}}\Rightarrow9\left(18n+3\right)-7\left(23n+7\right)⋮3\)

=> \(n+11⋮3\)

=> \(n-1⋮3\)

=>Tồn tại số tự nhiên k sao cho:  \(n=3k+1\)khi đo phân số sẽ rút gọn được cho 3

+) Với d = 19

\(\hept{\begin{cases}18n+3⋮19\\23n+7⋮19\end{cases}}\Rightarrow9\left(18n+3\right)-7\left(23n+7\right)⋮19\)

=> \(n+11⋮19\Rightarrow n-8⋮19\)

=> Tồn tại số tự nhiên k sao cho n = 19k + 8 khi đó phân số sẽ rút gọn được cho 19

Vậy n = 3k + 1 hoặc  n = 19k + 8 thì phân số sẽ rút gọn được.

19 tháng 2 2020

B = \(\frac{2n+9}{n+2}\)\(\frac{5n+17}{n+2}\)-\(\frac{3n}{n+2}\)

B= \(\frac{2n+9+5n+17-3n}{n+2}\)

B= \(\frac{\left(2n+5n-3n\right)+9+17}{n+2}\)

B= \(\frac{4n+9+17}{n+2}\)\(\frac{4n+26}{n+2}\)

Để biểu thức B là số tự nhiên thì ( 4n+26) \(⋮\)n+2

=> n+2 \(⋮\)n+2

=> (4n+26) - 4(n+2)\(⋮\)n+2

=> 4n+26 - 4n - 8 \(⋮\)n+2

=> 18 \(⋮\)n+2

=> n+2 \(\in\)Ư(18)={1; 2; 9; 3; 6; 18; -1; -2; -9; -3; -6; -18}

=> N\(\in\){ -1; 0; 7; 1; 4; 16; -3; -4; -5; -11; -20; -8}

Vậy...