Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cau 2
a^2 +b^2+c^2 +3>=2(a+b+c)
<=> a^2+b^2 +c^2 +3 -2a -2b -2c >=0
<=>(a-1)^2+(b-1)^2+(c-1)^2>=0 (luon đúng)
vậy a^2 +b^2 +c^2 +3 >=2(a+b+c)
cau 1
a^2 +b^2 +1>= ab +a +b (H)
<=> 2a^2 +2b^2 -2a -2b -2ab +2>=0 (nhân cả 2 vế với 2 đồng thời chuyển vế)
<=> (a^2 -2a +1) +(b^2-2b+1 )+(a^2 -2ab+b^2)>=0
<=> (a-1)^2+(b-1)^2 +(a-b)^2>=0 (luon dung)
=>H luôn đung
\(sigma\frac{a^2+b^2}{ab\left(a+b\right)^3}\ge sigma\frac{\frac{\left(a+b\right)^2}{2}}{\left(a+b\right)^2\left(a^3+b^3\right)}=sigma\frac{1}{2\left(a^3+b^3\right)}\ge\frac{9}{4\left(a^3+b^3+c^3\right)}=\frac{9}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt[3]{3}}\)
a) ta có: (a+b)2 = 2.(a2+b2)
=> a2 + 2ab + b2 = 2a2 + 2b2
=> 2a2 + 2b2 - a2 - 2ab - b2 = 0
a2 - 2ab + b2 = 0
(a-b)2 = 0
=> a -b = 0
=> a = b
b) ta có: a2 +b2 + c2 = ab + bc + ac => 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ac
=> (a-b)2 + (b-c)2 + (c-a)2 = 0
=> a = b = c
d) => 2a^2 + 2b^2 + 2c^2 = 2ab+ 2bc + 2ca
=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca = 0
( a^2 - 2ab+b^2 ) + ( a^2 - 2ac + c^2) + ( b^2 - 2bc - c^2) = 0
(a-b)^2 + (a-c)^2 + (b-c)^2 = 0
=> | ( a-b)^2 = 0 => a=b
| ( a-c)^2 = 0 => a=c
| ( b-c)^2 = 0 => b=c
=>>> a=b=c
B1:a2+b2+c2=ab+bc+ac tương đương 2(a2+b2+c2) - 2(ab+bc+ac) =0
suy ra 2a2 +2b2 +2c2 -2ab-2bc-2ac=0
suy ra (a2 -2ab+b2) +(b2-2bc+c2)+(a2-2ac+c2)=0
suy ra (a-b)2+(b-c)2+(a-c)2=0 suy ra (a-b)2=0 tương đương a-b=0 suy ra a=b (1)
(b-c)2=0 tương đương b-c=0 suy ra b=c (2)
(a-c)2 =0 tương đương a-c=0 suy ra b=c (3)
từ (1);(2);(3)suy ra a=b=c.Mà a=b=c=9 suy ra a=b=c=3(đpcm)
bai 1 : ve trai : a2 + b2 + c2 = a.a + b.b + c.c = (a.b) + (b.c) +(c.a) = ab + bc +ca = ve phai
ma a+b+c=9 suy ra : 3+3+3=9 suy ra a ;b;c deu bang 3
vi ve trai = ve phai ma a ;b ;c =3 vay dang thuc duoc chung minh
Bài 1:
Xét A= \(a^2+b^2+c^2-ab-ac-bc\)
\(2A=2a^2+2b^2+2c^2-2ab-2ac-2bc\\ =\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\\ =\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\\ \Rightarrow A\ge0\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Bài 2:
Xét \(A=a^2+b^2+c^2+\frac{3}{4}-a-b-c\)
\(\Rightarrow A=\left(a^2-a+\frac{1}{4}\right)+\left(b^2-b+\frac{1}{4}\right)+\left(c^2-c+\frac{1}{4}\right)\\ =\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2\ge0\forall a,b,c\\ \Rightarrow a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)