Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 3 + 32 + 33 + ... + 320
3A = 3 + 32 + 33 + 34 + . . . + 320 + 321
2A = 321 - 1
A = \(\frac{3^{21}-1}{2}\)
B = \(\frac{3^{21}}{2}\)
\(\Rightarrow B-A=\frac{3^{21}}{2}-\frac{3^{21}-1}{2}=\frac{3^{21}-\left(3^{21}-1\right)}{2}=\frac{1}{2}\)
b, A = 1 + 4 + 42 + ... + 499
4A = 4 + 42 + 43 + . . . + 499 + 450
3A = 450 - 1
A = \(\frac{4^{50}-1}{3}\)
B = \(\frac{4^{50}}{3}\)
Vì \(\frac{4^{50}-1}{3}< \frac{4^{50}}{3}\Rightarrow A< B\left(đpcm\right)\)
1. Tính tổng:
B = 2 - 4 - 6 + 8 + 10 - 12 - 14 + 16 + ... + 2002 - 2004 - 2006 + 2008
=> ( 2 - 4 - 6 + 8 )+ (10 - 12 - 14 + 16) + ... + (2002 - 2004 - 2006 + 2008)
=> (-8+ 8) +(-16+ 16) +.........+ ( -2008+ 2008)(1)
=> 0+0+...........+0
=> 0
Ta thấy (1) đều là những số đối nên kết quả đường nhiên bằng 0
\(A=1+4+4^2+4^3+...+4^{99}\\ \Rightarrow4A=4+4^2+4^3+...+4^{100}\\ \Rightarrow3.A=4^{100}-1\\ \Rightarrow A=\dfrac{4^{100}-1}{3}< \dfrac{4^{100}}{3}=\dfrac{B}{3}\\ \Rightarrow A< \dfrac{B}{3}\)
A=1+4+42+...+499
4A=4+42+43+...+4100
4A-A=3A=(4+42+...+4100)-(1+4+42+...+499)
3A=4100-1
Ta thấy: 3A<B =>A<B/3 (điều phải chứng minh)
nhớ tích đúng nhe!!
A=1+4+42+...+499
=>4A=4+42+43+...+4100
=>4A-A=(4+42+43+...+4100)-(1+4+42+...+499)=4100-1<4100
=>3A<4100
=>3A<B
=>A<B/3
Mik làm được 1 bài thôi . Tiếc quá mình sắp phải đi học rồi.
BÀi 12:
S=1 + 2 + 22 + `23 +..........+ 22017
2S=2 + 22 + `23 + 24 +..........+22017 + 22018
Trừ đi hai vế ta được:
S=1 + 22018
A=1+4+42+43+.......+499 4A=4+42+43+44+.....+4100 4A-A=4+42+43+44+.....+4100 -1-4-42-43-.......-499 3A=4100-1 => A=(4100-1)/3 Vì 4100>4100-1 nên (4100-1)/3 < 4100/3 HAY A<B/3(ĐPCM)
B1 : B-A = 1/2
B2 :
CM được : A = (4^100-1)/3
=> A < 4^100/3 = B/3
Tk mk nha
Bài 1 :
A = 1 + 3 + 32 + 33 + ....... + 320
\(\Rightarrow3A=3+3^2+3^3+3^4+......+3^{21}\)
\(\Rightarrow3A-A=\left(3+3^2+3^3+3^4+.....+3^{21}\right)-\left(1+3+3^2+3^3+......+3^{20}\right)\)
\(\Rightarrow2A=2+3^{21}\)
\(\Rightarrow A=\frac{2+3^{21}}{2}\)
\(\Rightarrow B-A=\left(2+3^{21}\right):2-3^{21}:2\)
\(\Rightarrow B-A=1+3^{21}:2-3^{21}:2\)
\(\Rightarrow B-A=1+\left(3^{21}:2-3^{21}:2\right)\)
\(\Rightarrow B-A=1+0\)
\(\Rightarrow B-A=1\)
Vậy \(B-A=1\)
Bài 2 :
\(A=1+4+4^2+4^3+.....+4^{99}\)
\(\Rightarrow4A=4+4^2+4^3+4^4+.....+4^{100}\)
\(\Rightarrow4A-A=\left(4+4^2+4^3+4^4+.....+4^{100}\right)-\left(1+4+4^2+4^3+......+4^{99}\right)\)
\(\Rightarrow3A=3+4^{100}\)
\(\Rightarrow A=\frac{3+4^{100}}{3}\)
\(\Rightarrow\frac{B}{3}=\frac{4^{100}}{3}\)
Vì \(4^{100}=4^{100}\)nên \(3+4^{100}>4^{100}\)
Vậy \(A>\frac{B}{3}\left(ĐPCM\right)\)