Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì x2 ≥ 0 , 2y2 ≥ 0 với mọi x,y
=>x2+2y2+ 1 ≥ 1
=>Phân thức trên luôn có nghĩa
x11+x4+1
= x11+x10+x9-x10-x9-x8+x8+x7+x6-x7-x6-x5+x5+x4+x3-x3-x2-x+x2+x+1
= x9(x2+x+1)-x8(x2+x+1)+x6(x2+x+1)-x5(x2+x+1)+x3(x2+x+1)-x(x2+x+1)+(x2+x+1)
= (x2+x+1)(x9-x8+x6-x5+x3-x+1)
1
a . X.(X-2)-Y.(X-2)=(X-Y).(X-2)
b .(X2 +1+2X).(X2 +1-2X)
2
3X2 +2X+X2 +2X+1-4X2 -10X+10X+5=(-12)
4X+6= -12
X=9/2
1. a, x2-2x+2y-xy = x(x-2)+y(2-y) = x(x-2)-y(x-2) = (x-y)(x-2)
b, (x2+1)2-4x2 = (x2+1-2x)(x2+1+2x) = (x-1)2(x+1)2
2. x(3x+2)+(x+1)2-(2x-5)(2x+5) = -12
=> (3x2+2x+x2+2x+1)-(2x)2-52 = -12
=> 3x2+2x+x2+2x+1-4x2-25 = -12
=> 4x-24 = -12 => 4x = 12 => x = 3
b) Ta có 10b-4b+3b=9b
mà 9b chia hết cho 9
hay 10b-4b+3b chia hết cho 9
\(Q=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(Q=x^3+y^3+3xy\left(x+y\right)-2\left(x^2+y^2+2xy\right)+3\left(x+y\right)+10\)
\(Q=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)+10\)
Thay x + y = 5 vào ta có :
\(Q=5^3-2.5^2+3.5+10\)
\(Q=100\)
đợi mk tí mk lm cho
bài 1: Gọi 2 số chính phương liên tiếp là a\(^2\) và (a+1)\(^2\)( vs a\(\in\) N )
CM :S=a\(^2\) +(a+1)\(^2\)+a\(^2\).(a+1)\(^2\) là số chính phương
Thật vậy : S= a\(^2\) +(a+1)\(^2\)+a\(^2\).(a+2a+1)
= a\(^2\)+a\(^2\)+2a+1+a\(^4\)+2a\(^3\)+a\(^2\)
= (a\(^2\))\(^2\)+a\(^2\)+1\(^2\)+2.a\(^2\).a+a+2a\(^2\).1+2a.1
= (a\(^2\)+a+1)\(^2\) là số chính phương (đpcm)