K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2016

\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004\times\left(2005^2+2005+1\right)⋮2004\left(\text{đ}pcm\right)\)

\(2005^3+125=\left(2005+5\right)\left(2005^2-2005\times5+5^2\right)=2010\times\left(2005^2-2005\times5+5^2\right)⋮2010\)

\(x^6+1=\left(x^2+1\right)\left(x^4-x^2+1\right)⋮x^2+1\left(\text{đ}pcm\right)\)

\(x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)⋮x-y;x+y\left(\text{đ}pcm\right)\)

19 tháng 9 2016

bài 4 í, có chắc đề đúng ko z

đề bài => 8x3 - y+ 8x+ y3 - 16x+ 16xy = 32

=> 16xy = 32

=> xy = 2

=>\(\left[\begin{array}{nghiempt}x=1=>y=2\\x=-1=>y=-2\\x=2=>y=1\\x=-2=>y=-1\end{array}\right.\)

12 tháng 2 2018

Bài 1:

                    \(x^2-8x+y^2+6y+25=0\)

\(\Leftrightarrow\)\(\left(x^2-8x+16\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\)\(\left(x-4\right)^2+\left(y+3\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x-4=0\\y+3=0\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=4\\y=-3\end{cases}}\)

Vậy...

Bài 2: 

Phương trình có nghiệm duy nhất là    x = -2/3    nên ta có:

          \(\left(4+a\right).\frac{-2}{3}=a-2\)

\(\Leftrightarrow\)\(-\frac{8}{3}-\frac{2}{3}a=a-2\)

\(\Leftrightarrow\)\(a+\frac{2}{3}a=2-\frac{8}{3}\)

\(\Leftrightarrow\)\(\frac{5}{3}a=-\frac{2}{3}\)

\(\Leftrightarrow\)\(a=-\frac{2}{5}\)

27 tháng 2 2018

Bài 3:

\(A=a^4-2a^3+3a^2-4a+5\)

\(=a^3\left(a-1\right)-a^2\left(a-1\right)+2a\left(a-1\right)-2\left(a-1\right)+3\)

\(=\left(a-1\right)\left(a^3-a^2+2a-2\right)+3\)

\(=\left(a-1\right)\left[a^2\left(a-1\right)+2\left(a-1\right)\right]+3\)

\(=\left(a-1\right)^2\left(a^2+2\right)+3\ge3\)

\(\text{Vậy Min A=3. Dấu "=" xảy ra khi và chỉ khi }a-1=0\Leftrightarrow a=1\)

Bài 4:

\(xy-3x+2y=13\)

\(\Leftrightarrow x\left(y-3\right)+2\left(y-3\right)=7\)

\(\Leftrightarrow\left(x+2\right)\left(y-3\right)=7=1.7=7.1=-1.-7=-7.-1\)

x+2-7-117
y-3-1-771
x-9-3-15
y2-4104

Vậy...

Bài 5:

\(xy-x-3y=2\)

\(\Leftrightarrow x\left(y-1\right)-3\left(y-1\right)=5\)

\(\Leftrightarrow\left(x-3\right)\left(y-1\right)=5=1.5=5.1=-1.-5=-5.-1\)

x-3-5-115
y-1-1-551
x-2248
y0-462

Vậy....

30 tháng 11 2017

Bài 1 

a)  (6x4y2 - 3x3y3) : 3x3y2 = 6x4y2  : 3x3y2 - 3x3y3 : 3x3y2 = 2x - y

b)  (2x - 1)(x2 - x + 3) = 2x3 - 2x2 + 6x - x2 + x - 3 = 2x3 - 3x2 + 7x - 3

Bài 2

1)     (x - 2)2 - (x - 3)2 = (x - 2 - x + 3)(x - 2 + x - 3) = 2x - 5>

2)     4x2 - 4xy + 2y2 + 1 = (4x2 - 4xy + y2) + y2 + 1 = (2x - y)2 + y2 + 1 > 0 

vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)

18 tháng 2 2018

6) Ta có

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)

\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)