Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(4A=\frac{\left(x+y+z+t\right)^2\left(x+y+z\right)\left(x+y\right)}{xyzt}\)
\(\ge\frac{4\left(x+y+z\right)t\left(x+y+z\right)\left(x+y\right)}{xyzt}\)
\(=\frac{4\left(x+y+z\right)^2\left(x+y\right)}{xyz}\ge\frac{16\left(x+y\right)z\left(x+y\right)}{xyz}\)
\(=\frac{16\left(x+y\right)^2}{xy}\ge\frac{64xy}{xy}=64\)
\(\Rightarrow A\ge16\)
Đấu = xảy ra khi \(t=2z=4x=4y=1\)
x;y;z;t >0 áp dụng bất đẳng thức Cô-si cho 2 số dương ta có :
=\(x+y\ge2\sqrt{xy}\)
=\(\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\)
=\(\left(x+y+z\right)+t\ge2\sqrt{\left(x+y+z\right)t}\)
nhân các vế tương ứng ta có:
\(\left(x+y\right)\left(x+y+z\right)\left(x+y+z+t\right)\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)
mà x+y+z+t=2
\(\left(x+y\right)\left(x+y+z\right)2\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)
=\(\sqrt{\left(x+y\right)\left(x+y+z\right)}\ge4\sqrt{xyzt}\)
=\(\left(x+y\right)\left(x+y+z\right)\ge16xyzt\)
\(\Rightarrow B=\frac{\left(x+y\right)\left(x+y+z\right)}{xyzt}\ge\frac{16xyzt}{xyzt}=16\)
vậy minB=16 khi\(\hept{\begin{cases}x=y\\x+y=z\\x+y+z=t\end{cases}};x+y+z+t=2\Rightarrow x=y=0.25;z=0.5;t=1\)
\(A=\frac{2^2\left(x+y+z\right)\left(x+y\right)}{4xyzt}=\frac{\left(x+y+z+t\right)^2\left(x+y+z\right)\left(x+y\right)}{4xyzt}\)
\(A\ge\frac{4\left(x+y+z\right)t\left(x+y+z\right)\left(x+y\right)}{4xyzt}=\frac{\left(x+y+z\right)^2\left(x+y\right)}{xyz}\ge\frac{4\left(x+y\right)^2z\left(x+y\right)}{xyz}\)
\(A\ge\frac{4\left(x+y\right)^2}{xy}\ge\frac{16xy}{xy}=16\)
\(A_{min}=16\) khi \(\left\{{}\begin{matrix}x+y+z+t=2\\x+y+z=t\\x+y=z\\x=y\end{matrix}\right.\) \(\Rightarrow\left(x;y;z;t\right)=...\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\hept{\begin{cases}\frac{x^3}{\left(2x+y\right)\left(y+z\right)}+\frac{2x+y}{8}+\frac{y+z}{8}\ge3\sqrt[3]{\frac{x^3}{64}}=\frac{3x}{4}\\\frac{y^3}{\left(2y+z\right)\left(z+x\right)}+\frac{2y+z}{8}+\frac{x+z}{8}\ge3\sqrt[3]{\frac{y^3}{64}}=\frac{3y}{4}\\\frac{z^3}{\left(2z+x\right)\left(x+y\right)}+\frac{2z+x}{8}+\frac{x+y}{8}\ge3\sqrt[3]{\frac{z^3}{64}}=\frac{3z}{4}\end{cases}}\)
\(\Rightarrow\frac{x^3}{\left(2x+y\right)\left(y+z\right)}+\frac{y^3}{\left(2y+z\right)\left(x+z\right)}+\frac{z^3}{\left(2z+x\right)\left(x+y\right)}+\frac{5\left(x+y+z\right)}{8}\ge\frac{3\left(x+y+z\right)}{4}\)
\(\Rightarrow\frac{x^3}{\left(2x+y\right)\left(y+z\right)}+\frac{y^3}{\left(2y+z\right)\left(x+z\right)}+\frac{z^3}{\left(2z+x\right)\left(x+y\right)}+\frac{5}{8}\ge\frac{3}{4}\)
\(\Rightarrow\frac{x^3}{\left(2x+y\right)\left(y+z\right)}+\frac{y^3}{\left(2y+z\right)\left(x+z\right)}+\frac{z^3}{\left(2z+x\right)\left(x+y\right)}\ge\frac{1}{8}\)
\(\Leftrightarrow P_{min}=\frac{1}{8}\)
TA CÓ:
\(B=\frac{1}{\sqrt{x\left(y+2z\right)}}+\frac{1}{\sqrt{y\left(z+2x\right)}}+\frac{1}{\sqrt{z\left(x+2y\right)}}\ge\frac{1}{\frac{x+y+2z}{2}}+\frac{1}{\frac{y+z+2x}{2}}+\frac{1}{\frac{z+x+2y}{2}}\)
\(\ge\frac{\left(1+1+1\right)^2}{\frac{3}{2}\left(x+y+z\right)}=\frac{18}{3\sqrt{3}}=\frac{6}{\sqrt{3}}\)
DẤU BẰNG XẢY RA:\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
\(\frac{B}{\sqrt{3}}=\frac{1}{\sqrt{3x\left(y+2z\right)}}+\frac{1}{\sqrt{3y\left(z+2x\right)}}+\frac{1}{\sqrt{3z\left(x+2y\right)}}\)
\(\ge\frac{1}{\frac{3x+y+2z}{2}}+\frac{1}{\frac{3y+z+2x}{2}}+\frac{1}{\frac{3z+x+2y}{2}}\ge\frac{2\left(1+1+1\right)^2}{6\left(x+y+z\right)}=\frac{18}{6\sqrt{3}}\)
\(\Rightarrow B\ge\frac{18\sqrt{3}}{6\sqrt{3}}=3\)
Dấu "=" khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Ta có:
\(x+y+z+t=2\)
\(\Rightarrow\left[\left(x+y+z\right)+t\right]^2=4\)
Vì \(x,y,z,t>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(\left(x+y+z\right)+t\ge2\sqrt{\left(x+y+z\right)t}\)
\(\Leftrightarrow\left[\left(x+y+z\right)+t\right]^2\ge4\left(x+y+z\right)t\)
\(\Leftrightarrow4\ge4\left(x+y+z\right)t\)(vì \(\left[\left(x+y+z\right)+t\right]^2=4\))
\(\Leftrightarrow\left(x+y+z\right)t\le1\left(1\right)\)
Ta có:
\(P=\frac{\left(x+y+z\right)\left(x+y\right)}{xyzt}=\frac{1.\left(x+y+z\right)\left(x+y\right)}{xyzt}\)
\(\Leftrightarrow P\ge\frac{\left(x+y+z\right)t\left(x+y+z\right)\left(x+y\right)}{xyzt}\)(vì (1))
\(\Leftrightarrow P\ge\frac{\left(x+y+z\right)^2\left(x+y\right)}{xyz}\left(2\right)\)
Đặt \(\frac{\left(x+y+z\right)^2\left(x+y\right)}{xyz}=A\)thì \(P\ge A\)
Vì \(x,y,z>0\)nên áp dụng bất đẳng thúc Cô-si cho 2 số dương, ta được:
\(\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\)
\(\Leftrightarrow\left(x+y+z\right)^2\ge4\left(x+y\right)z\)
Do đó:
\(A=\frac{\left(x+y+z\right)^2\left(x+y\right)}{xyz}\ge\frac{4\left(x+y\right)z\left(x+y\right)}{xyz}\)
\(\Leftrightarrow A\ge\frac{4\left(x+y\right)^2}{xy}\left(3\right)\)
Từ (2) và (3), ta được:
\(P\ge\frac{4\left(x+y\right)^2}{xy}\left(4\right)\)
Vì \(x,y>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(x+y\ge2\sqrt{xy}\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow4\left(x+y\right)^2\ge16xy\)
\(\Leftrightarrow\frac{4\left(x+y\right)^2}{xy}\ge\frac{16xy}{xy}=16\left(5\right)\)
Từ (4) và (5), ta được:
\(P\ge16\)
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}x=y>0\\x+y=z>0\\x+y+z=t>0\end{cases}}\)
Mà \(x+y+z+t=2\)nên:
\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{4}\\z=\frac{1}{2}\\t=1\end{cases}}\)
Vậy \(minP=16\Leftrightarrow x=y=\frac{1}{4};z=\frac{1}{2};t=1\)