K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Lời giải:
$a^2(b+c)=b^2(b+c)$

$\Leftrightarrow a^2(b+c)-b^2(b+c)=0$

$\Leftrightarrow (a^2-b^2)(b+c)=0$
$\Leftrightarrow (a-b)(a+b)(b+c)=0$

Vì $a,b,c$ đôi 1 khác nhau nên $a-b\neq 0$

$\Rightarrow (a+b)(b+c)=0$

Mà $b+c\neq 0$ (do nếu $b+c=0$ thì $a^2(b+c)=0$ (trái với đề))

$\Rightarrow a+b=0$

$\Rightarrow H=c^2(a+b)=0$

13 tháng 3 2024

Dễ vcl giải

Có a²(b+c)-b²(a+c)=2013-2013=0

a²b+a²c-b²a-b²c=0

a²b-b²a+a²c-b²c=0

ab(a-b)+c(a²-b²)=ab(a-b)+c(a-b)(a+b)=0

(a-b)[ab+c(a+b)]=0

Suy ra 1 trong 2 số =0 mà a và b khác nhau nên ab+c(a+b)=0 

Suy ra ab và c(a+b) là 2 số đối suy ra ab×c và c×c(a+b) là 2 số đối suy ra abc và c²(a+b) là 2 số đối

=>c²(a+b)-abc=0

<=>c²(a+b)=-abc

Lại có ab + c(a+b)=0 =>          ab + ac + cb =0 

<=> a(b+c)+cb=0

<=> a²(b+c) + abc =0

=>abc =0-2013=-2013=> abc = -2013

Nên c²(a+b)=-(abc)=-(-2013)=2013 .

Vậy c²(a+b)=2023 ezzzz 

Bài này dễ lớp 6 mà

2 tháng 1 2017

2017

2 tháng 1 2017

cho mik xem cách làm đc ko