K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi số máy san đất của ba đội lần lượt là a ; b ; c \(\left(a;b;c\ne0\right)\)

Vì đội thứ nhất nhiều hơn đội thứ hai 2 máy \(\Rightarrow a-b=2\)

Vì đội thứ nhất hoàn thành công việc trong 3 ngày, đội thứ hai trong 4 ngày, đội thứ 3 trong 6 ngày \(\Rightarrow3a=4b=6c\).

Trên cùng một khối lượng công việc như nhau, số máy san đất và thời gian là 2 đại lượng tỉ lệ nghịch :

\(\Rightarrow\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\) . Áp dụng tính chất dãy tỉ số bằng nhau, ta có : 

\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{a-b}{\frac{1}{3}-\frac{1}{4}}=\frac{2}{\frac{1}{12}}=2\div\frac{1}{12}=2\times\frac{12}{1}=24\)

\(\Rightarrow a=24\div3=8\)         \(b=24\div4=6\)         \(c=24\div6=4\)

Vậy đội thứ nhất có 8 máy, đội thứ hai có 6 máy, đội thứ ba có 4 máy.

18 tháng 4 2017

Một số bài toán về đại lượng tỉ lệ nghịch

5 tháng 12 2017

Theo bài ta có số máy và số ngày của mỗi đội là 2 đại lượng tỉ lệ nghịch nên ta có :

4.x\(_1\)=6.x\(_2\)=8.x\(_3\) và x\(_1\)-x\(_2\)=2

\(\Rightarrow\dfrac{x_1}{\dfrac{1}{4}}=\dfrac{x_2}{\dfrac{1}{6}}=\dfrac{x_3}{\dfrac{1}{8}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{x_1}{\dfrac{1}{4}}=\dfrac{x_2}{\dfrac{1}{6}}=\dfrac{x_3}{\dfrac{1}{8}}=\dfrac{x_1-x_2}{\dfrac{1}{4}-\dfrac{1}{6}}=\dfrac{2}{\dfrac{1}{12}}=24\)

\(\dfrac{x_1}{\dfrac{1}{4}}=24\Rightarrow x_1=24.\dfrac{1}{4}=6\)

\(\dfrac{x_2}{\dfrac{1}{6}}=24\Rightarrow x_2=24.\dfrac{1}{6}=4\)

\(\dfrac{x_3}{\dfrac{1}{8}}=24\Rightarrow x_3=24.\dfrac{1}{8}=3\)

Vậy : Đội một có 6 máy

Đội hai có 4 máy

Đội ba có 3 máy

6 tháng 3 2020

Bạn tham khảo link này:

https://olm.vn/hoi-dap/detail/65784971247.html

6 tháng 3 2020

bạn nhớ vào link này và tham khảo nha:

https://olm.vn/hoi-dap/detail/65784971247.html

Chúc bạn học tốt

1 tháng 10 2017

Gọi số máy của ba đội theo thứ tự là :x1,x2,x3 (máy)

Theo đề bài ta có : x1-x2=2

Vì các máy có cùng năng suất nên số máy và số ngày hoàn thành công việc là hai đại lượng tỉ lệ nghịch.

Do đó ta có :4x1 = 6x2 = 8x3 hay Giải bài 21 trang 61 Toán 7 Tập 1 | Giải bài tập Toán 7

Theo tính chất của dãy tỉ số bằng nhau ta có:

Giải bài 21 trang 61 Toán 7 Tập 1 | Giải bài tập Toán 7

Giải bài 21 trang 61 Toán 7 Tập 1 | Giải bài tập Toán 7

Số máy của ba đội theo thứ tự là 6 ; 4 ; 3 (máy )

Gọi số máy của 3 đội là 1 , 2, 3, là a , b ,c ( máy )

=> a - b = 2

Do các máy có cùng năng suất và khối lượng công việc mỗi đội như nhau nên : 3a = 4b = 6c

=> 3a/24 = 4b/24 = 6c/24 => a/8 = b/6 = c/4

Áp dụng tính chất dãy tỉ số bằng nhau ta có : a/8 = b/6 = c/4 = a - b/8 - 6 = 2/2 = 1

a/8 = 1 => a = 8

b/6 = 1 => b = 6

c/6 = 1 => 

DD
30 tháng 7 2021

Gọi số máy của mỗi đội lần lượt là \(x,y,z\)(máy) \(x,y,z\inℕ^∗\)

Ta có: \(4x=6y=8z\Leftrightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x-y}{6-4}=\frac{2}{2}=1\)

\(\Leftrightarrow\hept{\begin{cases}x=1.6=6\\y=1.4=4\\z=1.3=3\end{cases}}\)

17 tháng 12 2017

Gọi số máy của cả đội thứ nhất; đội thứ hai; đội thứ ba lần lượt là x(máy); y(máy); z(máy) (x; y; z là số tự nhiên khác 0)

Ta có số máy và số ngày làm việc tỉ lệ nghịch với số máy (vì năng suất của mỗi máy là như nhau

nên 2x = 3y = 4z hay \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\)

mà y - z = 3 (đội thứ hai nhiều hơn đội thứ ba 3 máy)

Theo tính chất dãy tỉ số bằng nhau ta có

 \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}=\frac{y-z}{\frac{1}{3}-\frac{1}{4}}=\frac{3}{\frac{1}{12}}=36\)

do đó x = 1/2 . 36 = 18

          y = 1/3 . 36 = 12

          z = 1/4 . 36 = 9

Vậy số máy của cả ba đội lần lượt là: 18(máy); 12(máy); 9(máy)

17 tháng 12 2017
Số máyabc
Số ngày 234

Gọi 3 đội máy san đất lần lượt là a,b,c ( a, b, c >0) 

Vì số máy và số ngày là 2 đại lượng tỉ lệ nghịch nên 

Ta có :2.a=3.b=4.c\(\Rightarrow\frac{2a}{12}=\frac{3b}{12}=\frac{4c}{12}\)\(\)

\(\)Hay:\(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)

                       Áp dụng tính chất dãy tỉ số bằng nhau :

                              \(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{b-c}{4-3}=\frac{3}{1}=3\)

\(\frac{a}{6}=1\Rightarrow a=6\)

\(\frac{b}{4}=1\Rightarrow b=4\)

\(\frac{c}{3}=1\Rightarrow c=3\)

Vậy đội 1, 2, 3 có số máy lần lượt là :6 máy, 4 máy, 3 máy

20 tháng 8 2015

gọi x;y;z lần lượt là số máy lần lượt của 3 đội (x;y;z>0)

theo đề ta thấy: số máy tỉ lệ nghịch với số ngày hoàn thành công việc

=> x.4=y.6=z.8 và x-y=2

=>\(\frac{x}{6}=\frac{y}{4};\frac{y}{8}=\frac{z}{6}\)

=>\(\frac{x}{48}=\frac{y}{32}=\frac{z}{24}\)

áp dung tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{48}=\frac{y}{32}=\frac{z}{24}=\frac{x-y}{48-32}=\frac{2}{16}=0,125\)

suy ra: \(\frac{x}{48}=0,125\Rightarrow x=6\)

\(\frac{y}{32}=0,125\Rightarrow y=4\)

\(\frac{z}{24}=0,125\Rightarrow z=3\)

Vậy số máy 3 đội là: *đội thứ nhất : 6 máy

*đội thứ 2: 4 máy

*đội thứ 3: 3 máy

20 tháng 8 2015

gọi số máy của đội thứ nhất, đội thứ hai, đội thứ ba là:

      x,y,z ( x,y,z thuộc N*)

vì các máy có cùng năng xuất nên số máy và số ngày là hai đại lượng tỉ lệ nghịch , do đó ta có:

 4x=6y=8z hay \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{8}}=\frac{x-y}{\frac{1}{4}-\frac{1}{6}}=\frac{2}{\frac{3-2}{12}}=\frac{2.12}{1}=24\)

do đó: \(\frac{x}{\frac{1}{4}}=24\Rightarrow x=24.\frac{1}{4}=6\)

            \(\frac{y}{\frac{1}{6}}=24\Rightarrow x=24.\frac{1}{6}=4\)

             \(\frac{z}{\frac{1}{8}}=24\Rightarrow x=24.\frac{1}{8}=3\)