K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài1:

\(\left(3+xy^2\right)^2=81+6xy^2+x^2y^4\)

Các câu sau tương tự

Bài2:

\(a,\left(4x^2+4xy+y^2\right)\)

=\(\left(2x+y\right)^2\)

b)\(9m^2+n^2-6mn=\left(3m-n\right)^2\)

c)\(16a^2+25b^2+40ab=\left(4a+5b\right)^2\)

d)\(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)

Bài3:

\(a,301^2=\left(300+1\right)^2=900+600+1=1501\)

b/\(499^2=\left(500-1\right)^2=2500-1000+1=1501\)

c/\(68.72=\left(70-2\right)\left(70+2\right)=70^2-2^2=4900-4=4896\)

6 tháng 9 2017

Bài 1:

a, \(\left(3+xy^2\right)^2=9+6xy^2+x^2y^4\)

b, \(\left(10-2m^2n\right)^2=100-40m^2n+4m^4n^2\)

c, \(\left(a-b\right)^2.\left(a+b\right)^2=\left[\left(a-b\right)\left(a+b\right)\right]^2\)

\(=\left(a^2-b^2\right)^2=a^4-2a^2b^2+b^4\)

Chúc bạn học tôt!!!

25 tháng 8 2018

Câu a : \(4x^2+4xy+y^2=\left(2x+y\right)^2\)

Câu b : \(9m^2+n^2-6mn=\left(3m-n\right)^2\)

Câu c : \(16a^2+25b^2+40ab=\left(4a+5b\right)^2\)

Câu d : \(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)

25 tháng 8 2018

\(a,4x^2+4xy+y^2=\left(2x\right)^2+4xy+y^2=\left(2x+y\right)^2\)

\(b,9m^2+n^2-6mn=\left(3m\right)^2-6mn+n^2=\left(3m-n\right)^2\)

\(c,16a^2+25b^2+40ab=\left(4a\right)^2+40ab+\left(5b\right)^2=\left(4a+5b\right)^2\)

@Yukru ơi! giúp câu D với!

Chúc bạn học tốt!ok

29 tháng 8 2017

a) \(4x^2+4xy+y^2=\left(2x\right)^2+2.2x.y+y^2=\left(2x+y\right)^2\)

b) \(9m^2+n^2-6mn=\left(3m\right)^2-2.3m.n+n^2=\left(3m-n\right)^2\)

c) \(16a^2+25b^2+40ab=\left(4a\right)^2+2.4a.5b+\left(5b\right)^2=\left(4a+5b\right)^2\)

d) \(x^2-x+\dfrac{1}{4}=\left(x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2\right)=\left(x-\dfrac{1}{2}\right)^2\)

28 tháng 8 2017

a,(2x+y)2

b,(3m-n)2

c,(4a+5b)2

d,(x-\(\dfrac{1}{2}\))2

2 tháng 9 2019

Bài 62: 25x2y6-60xy4z2+36y2z4=(5xy3)2-2.5xy3.(6yz2)2

Bài 63: 1/9u4v6-1/3u5v4+(1/2u3v)=(1/3u2v3)-2.1/3u2v3.1/2u2v3+(1/2u3v)

8 tháng 9 2019

a) 4x2+4xy+y2

=(2x)2+2(2x)(y)+y2

=(2x+y)2

b)9m2+n2-6mn

=(3m)2-2(3m)n+n2

=(3m-n)2

c)16a2+25b2+40ab

=(4a)2+(5b)2+2(4a)(5b)

=(4a+5b)2

d)x2-x+\(\frac{1}{4}\)

=x2-2x.\(\frac{1}{2}\)+\(\left(\frac{1}{2}\right)^2\)

=\(\left(x-\frac{1}{2}\right)^2\)

2 tháng 9 2017

a, \(4x^2+4xy+y^2=\left(4x\right)^2+2.2x.y+y^2\)

\(=\left(4x+y\right)^2\)

b, \(9m^2+n^2-6mn=\left(3m\right)^2-2.3m.n+n^2\)

\(=\left(3m-n\right)^2\)

c, \(16a^2+25b^2+40ab=\left(4a\right)^2+2.4a.5b+\left(5b\right)^2\)

\(=\left(4a+5b\right)^2\)

d, \(x^2-x+\dfrac{1}{4}=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\)

\(=\left(x-\dfrac{1}{2}\right)^2\)

Chúc bạn học tốt!!!

2 tháng 9 2017

cam on ban rat nhieu lan sau nho giup mk nua nhahihithanghoa

16 tháng 6 2015

bạn phải tách từng câu ra. chứ kiểu này k ai trả lời cho đâu

10 tháng 4 2016

2)

a)x2-y2=(x+y).(x-y)=(87+13).(87-13)=100.74=7400

b)x3-3x2+3x-1=(x-1)3=(101-1)3=1003=1000000

c)x3+9x2+27x+27=(x+3)3=(97+3)3=1003=1000000

4)

a)x2-6x+10=x2-6x+9+1=(x-3)2+1>=1>0 voi moi x

b)4x-x2-5= -(x2-4x+5)= -(x2-4x+4+1)= -(x-2)2 - 1<0 voi moi x

5 tháng 10 2020

Bài 3: Viết các biểu thức dưới dạng bình phương một tổng hoặc hiệu

a. 4x2+4x+1

=(2x)2+2.2x.1+12

=(2x+1)2

b. x2+16- 8x

=x2-2.4x+42

=(x-4)2

c. x2-x+\(\frac{1}{4}\)

=x2 - 2x\(\frac{1}{4}\) + (\(\frac{1}{2}\))2

=(x-\(\frac{1}{2}\))2

5 tháng 10 2020

d. (x+y)2( x-y)2

=(x+y)(x+y)( x-y)( x-y)

=[(x+y)( x-y)][(x+y)( x-y)]

=(x2-y2)(x2-y2)

=x4-x2y2-x2y2+y4

=(x2)2-2x2y2+(y2)2

=(x2-y2)2

1. Rút gọn các biểu thức sau: a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12 b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12 c. C = (a + b + c)2 + (a + b - c)2 - 2(a + b)2 2. Chứng minh rằng: a. a3 + b3 = (a + b)3 - 3ab (a + b) b. a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 c2 - ab - bc - ca) Suy ra các kết quả: i. Nếu a3 + b3 + c3 = 3abc thì a + b + c = 0 hoặc a = b = c 3. Tìm giá trị nhỏ nhất của các biểu thức a. A = 4x2 + 4x + 11 b. B = (x - 1) (x...
Đọc tiếp

1. Rút gọn các biểu thức sau:

a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12

b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12

c. C = (a + b + c)2 + (a + b - c)2 - 2(a + b)2

2. Chứng minh rằng:

a. a3 + b3 = (a + b)3 - 3ab (a + b)

b. a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 c2 - ab - bc - ca)

Suy ra các kết quả:

i. Nếu a3 + b3 + c3 = 3abc thì a + b + c = 0 hoặc a = b = c

Bài tập toán nâng cao lớp 8

3. Tìm giá trị nhỏ nhất của các biểu thức

a. A = 4x2 + 4x + 11

b. B = (x - 1) (x + 2) (x + 3) (x + 6)

c. C = x2 - 2x + y2 - 4y + 7

4. Tìm giá trị lớn nhất của các biểu thức

a. A = 5 - 8x - x2

b. B = 5 - x2 + 2x - 4y2 - 4y

5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c

b. Tìm a, b, c biết a2 - 2a + b2 + 4b + 4c2 - 4c + 6 = 0

6. Chứng minh rằng:

a. x2 + xy + y2 + 1 > 0 với mọi x, y

b. x2 + 4y2 + z2 - 2x - 6z + 8y + 15 > 0 Với mọi x, y, z

7. Chứng minh rằng:

x2 + 5y2 + 2x - 4xy - 10y + 14 > 0 với mọi x, y.

8. Tổng ba số bằng 9, tổng bình phương của chúng bằng 53. Tính tổng các tích của hai số trong ba số ấy.

9. Chứng minh tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho 9.

10. Rút gọn biểu thức:

A = (3 + 1) (32 + 1) (34 + 1) ... (364 + 1)

11. a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.

b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.

2
31 tháng 10 2017

1) a) \(A=100^2-99^2+98^2-97^2+....+2^2-1^2\)

\(=\left(100-99\right)\left(100+99\right)+\left(99-98\right)\left(99+98\right)+....\left(2-1\right)\left(2+1\right)\)

\(=100+99+98+.....+2+1\)

\(=\dfrac{100.101}{2}=5050\)

2) a) \(VP=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=a^3+b^3+3a^2b+3ab^2-3a^2b+3ab^2=a^3+b^3=VT\)

b) \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3a^2b+3ab^2+c^3-3abc\)

\(=\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=\dfrac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)

\(=\dfrac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)Khi \(a^3+b^3+c^3=3abc\) \(\Rightarrow\)
\(\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

i.i \(A=\dfrac{bc}{a^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}=abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=abc.\dfrac{3}{abc}=3\)iii. \(a^3+b^3+c^3=3abc\Rightarrow\)
\(\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

TH1: a=b=c

\(B=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

TH2: a+b+c=0

\(B=\left(\dfrac{a+b}{b}\right)\left(\dfrac{b+c}{c}\right)\left(\dfrac{a+c}{a}\right)=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=-1\)

6 tháng 1 2018

chép trên vn doc àgianroi

NV
2 tháng 8 2020

a.

\(\frac{x^2}{4}+x+3=\frac{x^2}{4}+x+1+2=\left(\frac{x}{2}+1\right)^2+2>0;\forall x\)

b.

\(A=-3x^2+2x-5=-3\left(x^2-2.\frac{1}{3}x+\frac{1}{9}\right)-\frac{14}{3}=-3\left(x-\frac{1}{3}\right)^2-\frac{14}{3}\le-\frac{14}{3}\)

\(A_{max}=-\frac{14}{3}\) khi \(x=\frac{1}{3}\)

c.

Đề thiếu (để ý 2 số hạng cuối)

\(A=x^4-2x^3+x^2+3x^2-6x+3-1\)

\(=\left(x^2-x\right)^2+3\left(x-1\right)^2-1\ge-1\)

\(A_{min}=-1\) khi \(x=1\)

d.

\(27x^2-\frac{9}{2}x+\frac{3}{16}=3\left(9x^2-\frac{3}{2}x+\frac{1}{16}\right)=3\left(3x-\frac{1}{4}\right)^2\)

e.

\(=\left[\left(b+c\right)+a\right]^2+\left[\left(b+c\right)-a\right]^2+\left[a-\left(b-c\right)\right]^2+\left[a+\left(b-c\right)\right]^2\)

\(=2\left(b+c\right)^2+2a^2+2a^2+2\left(b-c\right)^2\)

\(=4a^2+2b^2+4bc+2c^2+2b^2-4bc+2c^2\)

\(=4\left(a^2+b^2+c^2\right)\)

f.

\(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(=\left(a^2c^2+b^2d^2+2ac.bd\right)+\left(a^2d^2+b^2c^2-2ad.bc\right)\)

\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)