K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

\(1)\left(a+b\right)\left(a+b\right)\)

\(=a\left(a+b\right)+b\left(a+b\right)\)

\(=a^2+ab+ba+b^2\)

\(2)\left(a-b\right)\left(a-b\right)\)

\(=a\left(a-b\right)-b\left(a-b\right)\)

\(=a^2-ab-ba-b^2\)

\(3)\left(a-b\right)\left(a+b\right)\)

\(=a\left(a+b\right)-b\left(a+b\right)\)

\(=a^2+ab-ba+b^2\)

21 tháng 7 2018

1, (a+b)(a+b) = (a + b)2

2, (a-b)(a-b) = (a - b)2

3, (a-b)(a+b) = a2 - b2

4, (a+b)(a+b)(a+b) = (a +b)3

5, (a-b)(a-b)(a-b) = (a - b)3

6) ( a+b)(a2 - ab + b2) = a3 + b3

7) (a-b)(a^2+ab+b^2) = a3 - b3

30 tháng 7 2018

1. (a+b).(a+b)=\(\left(a+b\right)^2\)

2. (a-b).(a-b)=\(\left(a-b\right)^2\)

3. (a+b).(a-b)=\(a^2-b^2\)

4. (a+b).(a2- ab +b2)=\(a^3+b^3\)

5. (a-b).(a2 + ab + b2)=\(a^3-b^3\)

6. (a+b).(a2+ 2ab + b2)=\(\left(a+b\right).\left(a+b\right)^2=\left(a+b\right)^3\)

7. (a-b).(a2- 2ab + b2)=\(\left(a-b\right).\left(a-b\right)^2=\left(a-b\right)^3\)

Câu 1:

Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)

\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)

Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)

Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)

23 tháng 3 2018

5 , a3+b3+c3\(\ge\) 3abc

\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0

\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)

ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)

(a-b)2+(b-c)2+(c-a)2\(\ge0\)

<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)

<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)

Từ (1)(2)(3)=> pt luôn đúng

2 tháng 9 2019

ta có: a + b=-2 ; a^2 + b^2 = 52

=> (a+b)^2 = 4 => a^2 + 2ab + b^2 = 4

=> 52 + 2ab= 4

=> 48= -2ab

=> ab= -24

a^3 + b^3 = (a+b)( a^2-ab+ b^2)

=> a^3 + b^3 = -2.(52+24)= -2. 76= -152