Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
rút gọn các đa thức bằng cách nhân chúng với nhau rồi thay số vào là tính được mà
a) A = (x - 3)(x + 7) - (2x - 5)(x - 1)
= x(x + 7) - 3(x + 7) - 2x(x - 1) + 5(x - 1)
= x2 + 7x - 3x - 21 - 2x2 + 2x + 5x - 5
= (x2 - 2x2) + (7x - 3x + 2x + 5x) + (-21 - 5) = -x2 + 11x - 26 = -(x2 - 11x + 26)
+) Với x = 0 thì -(02 - 11.0 + 26) = -(0 - 0 + 26) = -26
+) Với x = 1 thì -(12 - 11.1 + 26) = -(1 - 11 + 26) = -16
b) B = (3x + 5)(2x - 1) + (4x - 1)(3x + 2)
= 3x(2x - 1) + 5(2x - 1) + 4x(3x + 2) - 1(3x + 2)
= 6x2 - 3x + 10x - 5 + 12x2 + 8x - 3x - 2
= (6x2 + 12x2) + (-3x + 10x + 8x - 3x)+ (-5 - 2) = 18x2 + 12x - 7
|x| = 2 => x = 2 hoặc x = -2
Với x = 2 thì 18.22 + 12.2 - 7 = 18.4 + 24 - 7 = 72 + 24 - 7 = 89
Với x = -2 thì 18.(-2)2 + 12.(-2) - 7 = 18.4 + (-24) - 7 = 18.4 - 24 - 7 = 41
c) C = (2x + y)(2z + y) + (x - y)(y - z)
= 2x(2z + y) + y(2z + y) + x(y - z) - y(y- z)
= 4xz + 2xy + 2zy + y2 + xy - xz - y2 + yz
= 4xz + 2xy + 2zy + (y2 - y2) +xy - xz + yz
= 4xz + 3xy + 3zy
Với x = 1,y = 1,z = 1
= 4.1.1 + 3.1.1 + 3.1.1 = 4 + 3 + 3 = 10
a) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\) (1)
\(\Leftrightarrow6x^2+21x-2x-7-\left(6x^2-5x+6x-5\right)=16\)
\(\Leftrightarrow6x^2+21x-2x-7-\left(6x^2+x-5\right)=16\)
\(\Leftrightarrow6x^2+21x-2x-7-6x^2-x+5=16\)
\(\Leftrightarrow18x-2=16\)
\(\Leftrightarrow18x=16+2\)
\(\Leftrightarrow18x=18\)
\(\Leftrightarrow x=1\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{1\right\}\)
b) \(\left(10x+9\right)\cdot x-\left(5x-1\right)\left(2x+3\right)=8\) (2)
\(\Leftrightarrow10x^2+9x-\left(10x^2+15x-2x-3\right)=8\)
\(\Leftrightarrow10x^2+9x-\left(10x^2+13x-3\right)=8\)
\(\Leftrightarrow10x^2+9x-10x^2-13x+3=8\)
\(\Leftrightarrow-4x+3=8\)
\(\Leftrightarrow-4x=8-3\)
\(\Leftrightarrow-4x=5\)
\(\Leftrightarrow x=-\dfrac{5}{4}\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{-\dfrac{5}{4}\right\}\)
c) \(\left(3x-5\right)\left(7-5x\right)+\left(5x+2\right)\left(3x-2\right)-2=0\) (3)
\(\Leftrightarrow21x-15x^2-35+25x+15x^2-10x+6x-4-2=0\)
\(\Leftrightarrow42x-41=0\)
\(\Leftrightarrow42x=41\)
\(\Leftrightarrow x=\dfrac{41}{42}\)
Vậy tập nghiệm phương trình (3) là \(S=\left\{\dfrac{41}{42}\right\}\)
d) \(x\left(x+1\right)\left(x+6\right)-x^3=5x\) (4)
\(\Leftrightarrow\left(x^2+x\right)\left(x+6\right)-x^3=5x\)
\(\Leftrightarrow x^3+6x^2+x^2+6x-x^3=5x\)
\(\Leftrightarrow7x^2+6x=5x\)
\(\Leftrightarrow7x^2+6x-5x=0\)
\(\Leftrightarrow7x^2+x=0\)
\(\Leftrightarrow x\left(7x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\7x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{7}\end{matrix}\right.\)
Vậy tập nghiệm phương trình (4) là \(S=\left\{-\dfrac{1}{7};0\right\}\)
A = 2x2 - 6xy - 3xy - 6y - 2x2 + 8xy + 6y
= - xy
= \(\frac{2}{3}\)\(x\)\(\frac{3}{4}\)
= \(\frac{1}{2}\)
mk đang bận mấy câu kia tương tự nha
a, \(\left|x\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
Thay x=2 vào A ta được :
A=(3.2+5)(2+7)-(2.2-5)(2-1)
=11.9+1.1=99+1=100
Vậy ..
Thay x=-2 vào A ta được :
A=(-2.3+5)(-2+7)-(-2.2-5)(-2-1)
=-1.5-(-9)(-3)
=-5+27=22
Vậy ...
b,\(\left|1\right|=z\)
\(\Rightarrow z=1\)
Thay x=1,y=2,z=1 vào B ta được :
B=(2.1+2)(2.1+2)+(1-2)(2-1)
=(2+2)(2+2)+(-1).1
=4.4-1 = 16-1=15
Vậy ....
a, \(\left|x^{ }\right|\)=2 \(\Rightarrow\)x=\(\pm2\)
TH 1: = (3.2+5)(2+7)- (2.2-5)(2-1)
=11 . 9+1
=99
TH2: =(3.-2)(-2+7)-(2.-2-5)(-2-1)
=-6.5+9.-3
=-30-27 = 57