Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)
\(=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2\)
\(=4\left(x^2+xy+xz\right)\left(x^2+xy+xz+yz\right)+y^2z^2\left(1\right)\)
Đặt \(a=x^2+xy+xz\)và \(b=yz\)ta có:
\(\left(1\right)\Rightarrow C=4a\left(a+b\right)+b^2=b^2+4ab+4a^2=\left(b+2a\right)^2\)
Vậy C là một số chính phương.
đặt \(A=x^2+y^2+2x\left(y-1\right)+2y=x^2+y^2+2xy-2x+2y=\left(x+y\right)^2-2\left(x-y\right)\)
do A là số chính phương => \(\left(x+y\right)^2-2\left(x+y\right)\)cũng là số chính phương
\(\Leftrightarrow-2\left(x-y\right)=0\)
\(\Leftrightarrow x=y\)
\(M=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2=4\left(x^2+xy+xz\right)\left(x^2+xy+xz+yz\right)+y^2z^2\)
Đặt \(x^2+xy+xz=a\) , ta có:
\(M=4a\left(a+yz\right)+y^2z^2=4a^2+4ayz+y^2z^2=\left(2a+yz\right)^2\)
\(M=\left(2x^2+2xy+2xz+yz\right)^2\)là số chính phương với \(x;y;z\in N\)
Bài 1:
N = x4 - 4x3 - 2x2 + 12x + 9
= x4 + x3 - 5x3 - 5x2 + 3x2 + 3x + 9x + 9
= x3(x + 1) - 5x2(x + 1) + 3x(x + 1) + 9(x + 1)
= (x + 1)(x3 - 5x2 + 3x + 9)
= (x + 1)(x3 + x2 - 6x2 - 6x + 9x + 9)
= (x + 1)[x(x + 1) - 6x(x + 1) + 9(x + 1)]
= (x + 1)(x + 1)(x - 3)2
= (x + 1)2(x - 3)2
= [(x + 1)(x - 3)]2
Vậy N là số chính phương.
Xong tất rồi bạn nhé. Chúc bạn học tốt!
Bài 2:
P = 4x(x + y)(x + y + z)(x + z) + y2z2
= [4x(x + y + z)][(x + y)(x + z)] + y2z2
= [4(x2 + xy + xz)](x2 + xy + xz + yz) + y2z2
Đặt t = x2 + xy + xz. Ta có biểu thức P theo t:
P = 4t(t + yz) + y2z2
= 4t2 + 4tyz + y2z2
= (2t + yz)2
Thay t = x2 + xy + xz vào P ta có:
P = (2t + yz)2
= [2(x2 + xy + xz) + yz]2
= (2x2 + 2xy + 2xz + yz)2
Vậy P là số chính phương.
Mình mới làm được bài 2 thôi, bài 1 mình sẽ gắng suy nghĩ.