Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
b) tam giacd DBM=tam giác DEC
A B C D E F
GT | △ABC: AB < AC. BAD = DAC = BAC/2 (D BC) E AC : AE = AB F AB : AF = AC |
KL | a, △ABD = △AED b, AD ⊥ FC c, △BDF = △EDC ; BF = EC d, F, D, E thẳng hàng |
Bài làm:
a, Xét △ABD và △AED
Có: AB = AE (gt)
BAD = DAE (gt)
AD là cạnh chung
=> △ABD = △AED (c.g.c)
b, Vì △ABD = △AED (cmt)
=> BD = ED (2 cạnh tương ứng)
=> D thuộc đường trung trực của BE (1)
Vì AB = AE (gt) => A thuộc đường trung trực của BE (2)
Từ (1) và (2) => AD là đường trung trực của BE
=> AD ⊥ FC
c, Vì △ABD = △AED (cmt)
=> ABD = AED (2 góc tương ứng)
Ta có: ABD + DBF = 180o (2 góc kề bù)
AED + DEC = 180o (2 góc kề bù)
Mà ABD = AED (cmt)
=> DBF = DEC
Lại có: AB + BF = AF
AE + EC = AC
Mà AB = AE (gt) ; AF = AC (gt)
=> BF = EC
Xét △BDF và △EDC
Có: BD = ED (cmt)
DBF = DEC (cmt)
BF = EC (cmt)
=> △BDF = △EDC (c.g.c)
d, Vì △BDF = △EDC (cmt)
=> BDF = EDC (2 góc tương ứng)
Ta có: BDE + EDC = 180o (2 góc kề bù)
=> BDE + BDF = 180o
=> FDE = 180o
=> 3 điểm F, D, E thẳng hàng
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
=>DB=DE và \(\widehat{ABD}=\widehat{AED}\)
Ta có: \(\widehat{ABD}+\widehat{DBF}=180^0\)(hai góc kề bù)
\(\widehat{AED}+\widehat{DEC}=180^0\)(hai góc kề bù)
mà \(\widehat{ABD}=\widehat{AED}\)
nên \(\widehat{DBF}=\widehat{DEC}\)
Ta có: AB+BF=AF
AE+EC=AC
mà AB=AE và AF=AC
nên BF=EC
Xét ΔDBF và ΔDEC có
DB=DE
\(\widehat{DBF}=\widehat{DEC}\)
BF=EC
Do đó: ΔDBF=ΔDEC
b: Ta có: AB+BF=AF
AE+EC=AC
mà AB=AE và AF=AC
nên BF=EC
c: Ta có: ΔDBF=ΔDEC
=>\(\widehat{BDF}=\widehat{EDC}\)
mà \(\widehat{EDC}+\widehat{EDB}=180^0\)
nên \(\widehat{BDF}+\widehat{EDB}=180^0\)
=>E,D,F thẳng hàng
d: ta có: ΔDBF=ΔDEC
=>DF=DC
=>D nằm trên đường trung trực của FC(1)
ta có: AF=AC
=>A nằm trên đường trung trực của CF(2)
Từ (1) và (2) suy ra AD là đường trung trực của CF
=>AD\(\perp\)CF
a) Xét tam giác ABD và tam giác AED có:
AB=AE (GT)
góc BAD = góc EAD (AD là tia phân giác)
AD chung
Suy ra tam giác ABD=tam giác AED(CGC)
Suy ra BD=BE (hai cạnh tương ứng)
Xét tam giác AFD và tam giác ACD có:
AF=AC(GT)
Góc FAD= góc CAD (AD là tia phân giác của góc A)
AD chung
suy ra tam giác AFD và tam giác ACD(CGC)
suy ra DF=DC(2 cạnh tương ứng)
vì AB+BF=AE+EC (AF=AC)
Mà AB=AE(GT)
Suy ra BF=EC
Xet tam giác BFD và tam giác ECD có:
DB=DE(CMT)
DF=DC(CMT)
BF=EC(CMT)
Suy ra tam giac BFD=tamgiác ECD (CCC)
b) BF=EC (CMT)
c) vì tam giác BFD=tam giác ECD (CMT)
Suy ra gócBDF= gócEDC(2 GÓC TƯƠNG ỨNG)
Mà 2 góc này ở vị trí đối đỉnh
suy ra 3 điểm F,D,E thẳng hàng
d) xét tam giác AFD có:
AF=EC(GT)
Suy ra tam giác AFC cân tại A
mà AD là tia phân giac của góc A(gt)
suy ra AD cũng là đường cao của tam giác FAC
hay AD vuông góc FC
A B C D F E
a) Xét \(\Delta AFD;\Delta ADC\) có :
\(AF=AC\left(gt\right)\)
\(\widehat{FAD}=\widehat{CAD}\left(gt\right)\)
\(AD:chung\)
=> \(\Delta AFD=\Delta ADC\left(c.g.c\right)\)
=> \(FD=DE\) ( 2 cạnh tương ứng)
=> \(\widehat{AFD}=\widehat{ACD}\) ( 2 góc tương ứng)
Ta có : \(\left\{{}\begin{matrix}AB=AE\left(gt\right)\\AF=AC\left(gt\right)\end{matrix}\right.\)
Mà : \(\left\{{}\begin{matrix}AF=AB+FB\\AC=AE+EC\end{matrix}\right.\)
=> \(FB=EC\)
Xét \(\Delta BDF;\Delta EDC\) có :
\(FB=EC\left(cmt\right)\)
\(\widehat{BFD}=\widehat{ECD}\) (do \(\widehat{AFD}=\widehat{ACD}\) -cmt)
\(FD=CD\left(cmt\right)\)
=> \(\Delta BDF=\Delta EDC\left(c.g.c\right)\)
c) Từ \(\Delta BDF=\Delta EDC\left(cmt\right)\)
=> \(FD=DE\) ( 2 cạnh tương ứng)
=> D là trung điểm của EF
Do đó : F, D, E thẳng hàng (đpcm)
d) Xét \(\Delta AFC\) có :
\(AF=AC\left(gt\right)\)
=> \(\Delta AFC\) cân tại A
Mà có : AD là tia phân giác của \(\widehat{CAF}\)(gt)
=> AD đồng thời là đường trung trực trong \(\Delta AFC\)
Hay : \(AD\perp FC\left(đpcm\right)\)
Câu 1 :
A B E C
a) Xét \(\Delta ABC\) có :
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại A
=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân)
Xét \(\Delta ABE;\Delta ACE\) có :
\(\widehat{BAE}=\widehat{CAE}\) (AE là tia phân giác của \(\widehat{BAC}\) )
\(AB=AC\left(cmt\right)\)
\(\widehat{ABE}=\widehat{ACE}\) (do \(\widehat{ABC}=\widehat{ACB}\)- cmt)
=> \(\Delta ABE=\Delta ACE\left(g.c.g\right)\)
b) Ta có : \(BE=EC\) (từ \(\Delta ABE=\Delta ACE\left(cmt\right)\))
=> AE là trung tuyến trong tam giác ABC
Xét \(\Delta ABC\) cân tại A (gt) có :
\(AE\) là tia phân giác của \(\widehat{BAC}\left(gt\right)\) đồng thời là trung tuyến (cmt)
Nên : AE là đường trung trục trong tam giác cân ABC (tính chất tam giác cân)
Suy ra : \(\left\{{}\begin{matrix}BE=EC\\AE\perp BC\end{matrix}\right.\)
Do đó : AE là trung trực của BC (đpcm)
A B C D F E