Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hello Triệu Mẫn điên .Tui là Nguyên 6n1^^
Tui đang suy nghĩ
Tui biết làm nhưng không nói
chỉ nói kết quả bằng 10
Đặt \(A=2017-\frac{1}{4}-\frac{2}{5}-...-\frac{2017}{2010}\)
\(B=\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\)
Ta có:
\(A=2017-\frac{1}{4}-\frac{2}{5}-...-\frac{2017}{2020}\)
\(A=1-\frac{1}{4}+1-\frac{2}{5}+1-\frac{3}{6}+...+1-\frac{2017}{2020}\)
\(A=\frac{3}{4}+\frac{3}{5}+\frac{3}{6}+...+\frac{3}{2020}\)
\(A=3\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2020}\right)\)
\(B=\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\)
\(B=\frac{1}{4.5}+\frac{1}{5.5}+\frac{1}{6.5}+...+\frac{1}{2020.5}\)
\(B=\frac{1}{5}\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2020}\right)\)
\(\frac{A}{B}=\frac{3\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2020}\right)}{\frac{1}{5}\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2020}\right)}=\frac{3}{\frac{1}{5}}=15\)
Bài 1:
a) b) c) sẽ có bạn giải cho em thôi vì nó dễ tính tay cũng đc
d) \(\frac{4}{2.5}+\frac{4}{5.8}+...+\frac{4}{23.26}\)
\(=\frac{4}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{23.26}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{23}-\frac{1}{26}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{26}\right)\)
\(=\frac{4}{3}.\frac{6}{13}\)
\(=\frac{8}{13}\)
Bài 2:
a) b) c)
d)\(|\frac{5}{8}x+\frac{6}{7}|-\frac{4}{7}=\frac{10}{7}\)
\(\Leftrightarrow|\frac{5}{8}x+\frac{6}{7}|=2\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x+\frac{6}{7}=2\\\frac{5}{8}x+\frac{6}{7}=-2\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x=\frac{8}{7}\\\frac{5}{8}x=\frac{-20}{7}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{64}{35}\\x=\frac{-32}{7}\end{cases}}}\)
Vậy \(x\in\left\{\frac{64}{35};\frac{-32}{7}\right\}\)
Bài 1 :
a) \(\left(\frac{2}{5}-\frac{5}{8}\right):\frac{11}{30}+\frac{1}{8}\)
\(=\frac{-9}{40}:\frac{11}{30}+\frac{1}{8}\)
\(=\frac{-27}{44}+\frac{1}{8}\)
\(=\frac{-43}{88}\)
Ta có: \(D=2016\left(1-\frac{2}{3}\right)\left(1-\frac{2}{5}\right)\left(1-\frac{2}{7}\right)...\left(1-\frac{2}{2017}\right)\)
\(=2016.\frac{1}{3}.\frac{3}{5}.\frac{5}{7}...\frac{2015}{2017}\)\(=2016.\left(\frac{1}{3}.\frac{3}{5}.\frac{5}{7}...\frac{2015}{2017}\right)\)
\(=2016\left(\frac{1.3.5.7...2015}{3.5.7....2015.2017}\right)\)\(=2016.\frac{1}{2017}=\frac{2016}{2017}\)
Vậy \(D=\frac{2016}{2017}\)
Ta có
\(2017-\left(\frac{1}{4}+\frac{2}{5}+\frac{3}{6}+\frac{4}{7}+...+\frac{2017}{2020}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{4}+\frac{2}{5}+...+\frac{2017}{2020}\right)\)
\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{2}{5}\right)+...+\left(1-\frac{2017}{2020}\right)\)
\(=\frac{3}{4}+\frac{3}{5}+....+\frac{3}{2020}\)
\(=\frac{3.5}{4.5}+\frac{3.5}{5.5}+\frac{3.5}{6.5}+...+\frac{3.5}{2020.5}\)
\(=3.5\left(\frac{1}{4.5}+\frac{1}{5.5}+\frac{1}{6.5}+...+\frac{1}{2020.5}\right)\)
\(=15.\left(\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\right)\)
Thế vào ta có
\(\frac{15.\left(\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\right)}{\frac{1}{20}+\frac{1}{25}+...+\frac{1}{10100}}=15\)
Được cập nhật 41 giây trước (17:23)
Ta có :
2017−(14 +25 +36 +47 +...+20172020 )
=(1+1+...+1)−(14 +25 +...+20172020 )
=(1−14 )+(1−25 )+...+(1−20172020 )
=34 +35 +....+32020
=3.54.5 +3.55.5 +3.56.5 +...+3.52020.5
=3.5(14.5 +15.5 +16.5 +...+12020.5 )
=15.(1
a) \(x=\frac{9}{10}\)
b) \(x=\frac{-4}{3}\)
c) \(x=\frac{1}{42}\)
d) \(x=\frac{-47}{10}\)
ko có thời gian nên mình chỉ cho đáp án thôi nhé
thông cảm cho mình ngen
đúng thì k đấy
chúc bạn học giỏi
Ta có: 2017 -1/4 -2/5 -3/6 -... -2017/2020
= (1-1/4)+(1-2/5)+(1-3/6)+...+(1-2017/2020)
= 3/4 + 3/5 + 3/6 +...+ 3/2020
= 15 (1/20+ 1/25+ 1/30+...+ 1/10100)
Vậy B = 15.
Chúc bạn học tốt.