Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = 2(1-1/2+1/2-1/3+...+1/19-1/20)
= 2(1-1/20)
= 2.19/20
= 19/10
b) = 7(1/2-1/3+1/3-1/4+...+1/6-1/7)
= 7(1/2 - 1/7)
= 7.5/14
= 5/2
c) = 1/2-1/5+1/5-1/8+...+1/14-1/17
= 1/2 - 1/17
= 15/34
Chúc bạn học tốt nhé
a)2/1.2+2/2.3+....+2/19.20
=2(1/1.2+1/2.3+....+1/19.20)
=2(1-1/2+1/2-1/3+.....-1/20)
=2(1-1/20)
2(19/20)=38/20=19/10
b)7/2.3+7/3.4+7/4.5+7/5.6+7/6.7
7(1/2.3+1/3.4+1/4.5+1/5.6+1/6.7)
7(1/2-1/3+1/3-1/4+.....-1/7)
7(1/2-1/7)
7(7/14-2/14)=7.5/14=35/14=5/2
c)3/2.5+3/5.8+3/8.11+3/11.14+3/14.17
1/2-1/5+1/5-1/8+......+1/14-1/17
1/2-1/17=17/34-2/34=15/34
\(3x-\frac{15}{5\cdot8}-\frac{15}{8\cdot11}-\frac{15}{11\cdot14}-...-\frac{15}{47\cdot50}=2\frac{1}{10}\)
<=> \(3x-5\left(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{47\cdot50}\right)=\frac{21}{10}\)
<=> \(3x-5\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{47}-\frac{1}{50}\right)=\frac{21}{10}\)
<=> \(3x-5\left(\frac{1}{5}-\frac{1}{50}\right)=\frac{21}{10}\)
<=> \(3x-5\cdot\frac{9}{50}=\frac{21}{10}\)
<=> \(3x-\frac{9}{10}=\frac{21}{10}\)
<=> \(3x=3\)
<=> \(x=1\)
Ta có : \(\frac{15}{5.8}-\frac{15}{8.11}-\frac{15}{11.14}-......-\frac{15}{47.45}\)
\(=\frac{3}{8}-\left(\frac{15}{8.11}+\frac{15}{11.14}+\frac{15}{14.17}+......+\frac{15}{47.50}\right)\)
\(=\frac{3}{8}-\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+.....+\frac{11}{47}-\frac{1}{50}\right)\)
\(=\frac{3}{8}-\left(\frac{1}{8}-\frac{1}{50}\right)\)
\(=\frac{3}{8}-\frac{1}{8}+\frac{1}{50}\)
\(=\frac{1}{4}+\frac{1}{50}=\frac{27}{100}\)
Bài làm :
\(\text{a)}=2,5-1,65.\frac{10}{11}=2,5-1.5=1\)
\(b\text{)}=\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{2015-2012}{2012.2015}\)
\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-...+\frac{1}{2012}-\frac{1}{2015}\)
\(=\frac{1}{5}-\frac{1}{2015}\)
\(=\frac{402}{2015}\)
\(a,\frac{5}{16}:0,125-\left(2\frac{1}{4}-0,6\right).\frac{10}{11}\)
\(=\frac{5}{16}:\frac{1}{8}-\left(\frac{9}{4}-\frac{3}{5}\right).\frac{10}{11}\)
\(=\frac{5}{2}-\frac{33}{20}.\frac{10}{11}\)
\(=\frac{5}{2}-\frac{3}{2}=\frac{2}{2}=1\)
a) \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+....+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(=3.\left(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}\right)=\frac{101}{1540}.3\)
\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x.3}=\frac{303}{1540}\)
\(=\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(=\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
\(=\frac{1}{x+3}=\frac{1}{308}\)
\(x+3=308\)
\(\Rightarrow x=305\)
Bài easy quá mà!
4. a) Áp dụng tỉ dãy số bằng nhau:
\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{100}-100}{1}\)
\(=\frac{\left(a_1+a_2+...+a_{100}\right)-\left(1+2+...+100\right)}{100+99+...+2+1}=\frac{5050}{5050}=1\)
Suy ra: \(a_1-1=100\Leftrightarrow a_1=101\)
\(a_2-2=99\Leftrightarrow a_2=101\)
.......v.v...
\(a_{100}-100=1\Leftrightarrow a_{100}=101\)
Do đó: \(a_1=a_2=a_3=...=a_{100}=101\)
Bài 5/
Theo t/c dãy tỉ số bằng nhau,ta có: \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)\(=\frac{2x}{x}\)
Suy ra:
\(\frac{y+z-x}{x}=\frac{2x}{x}\Leftrightarrow y+z-x=2x\Rightarrow x=y=z\) (vì nếu \(x\ne y\ne z\Rightarrow y+z-x\ne2x\) "không thỏa mãn")
Thay vào A,ta có: \(A=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)=2.2.2=8\)
a) \(A=\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot13}+...+\frac{3}{647\cdot650}\)
\(A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{647}-\frac{1}{650}=\frac{1}{5}-\frac{1}{650}=\frac{129}{650}\)
b) \(B=\frac{12}{3\cdot7}+\frac{12}{7\cdot11}+...+\frac{12}{196\cdot200}=3\left(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+...+\frac{4}{196\cdot200}\right)\)
\(=3\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{196}-\frac{1}{200}\right)=3\left(\frac{1}{3}-\frac{1}{200}\right)=3\cdot\frac{197}{600}=\frac{197}{200}\)
sửa 199 -> 200
P/S : Lần sau đừng có đăng từng câu từng câu hỏi trên đây nhá
Bài giải
a, \(A=\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{647\cdot650}\)
\(A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{647}-\frac{1}{650}\)
\(A=\frac{1}{5}-\frac{1}{650}=\frac{13}{650}-\frac{1}{650}=\frac{12}{650}=\frac{6}{325}\)
b, \(B=\frac{12}{3\cdot7}+\frac{12}{7\cdot11}+...+\frac{12}{196\cdot200}\)
\(B=3\left(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+...+\frac{4}{196\cdot200}\right)\)
\(B=3\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{196}-\frac{1}{200}\right)\)
\(B=3\left(\frac{1}{3}-\frac{1}{200}\right)=3\cdot\frac{197}{600}=\frac{197}{200}\)
\(B=\frac{3^2}{8.11}+\frac{3^2}{11.14}+...+\frac{3^2}{197.200}\)
\(B=3.\left(\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{197.200}\right)\)
\(B=3.\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(B=3.\left(\frac{1}{8}-\frac{1}{200}\right)\)
\(B=3.\frac{3}{25}\)
\(\Rightarrow B=\frac{9}{25}\)
\(B=\frac{3^2}{8.11}+\frac{3^2}{11.14}+...+\frac{3^2}{197.200}.\)
\(=3\left(\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{197.200}\right)\)
\(=3\left(\frac{11-8}{8.11}+\frac{14-11}{11.14}+...+\frac{200-197}{197.200}\right)\)
\(=3\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(=3\left(\frac{1}{8}-\frac{1}{200}\right)\)
\(=3\cdot\frac{3}{25}\)
\(=\frac{9}{25}\)