Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
- Ở hình 1a là đồ thị của hàm số \(y = 0,5x + 2\) hệ số \(a = 0,5 > 0\); Dùng thước đo độ kiểm tra ta thấy góc \(\alpha \) là góc nhọn.
- Ở hình 1b là đồ thị của hàm số \(y = - 0,5x + 2\) hệ số \(a = - 0,5 < 0\); Dùng thước đo độ kiểm tra ta thấy góc \(\alpha \) là góc tù.
a) Điểm \(A\left( {20;10} \right);B\left( {22;11} \right);C\left( {24;12} \right);D\left( {26;13} \right);E\left( {28;14} \right);D\left( {30;15} \right)\)
Ta thấy mỗi cặp giá trị \(x;y\) tương ứng trong bảng là tọa độ của các điểm \(A;B;C;D;E;F\).
a) Đường thẳng \(d:y = 2x\) và \(d':y = x\) đều có dạng \(y = ax\) nên giao điểm của hai đường thẳng là \(O\left( {0;0} \right)\) (cả hai đường thẳng đều đi qua điểm \(O\left( {0;0} \right)\).
b)
- Hệ số góc của đường thẳng \(d:y = 2x\) là\(a = 2\).
- Hệ số góc của đường thẳng \(d':y = x\) là\(a = 1\).
Hai đường thẳng có hệ số góc khác nhau thì cắt nhau.
c) Vì \(d\) và \(d''\) cắt nhau nên chúng không thể song song với nhau hoặc trùng nhau. Do đó, hệ số góc của \(d\) và \(d''\) phải khác nhau. Khi đó, hệ số góc của \(d''\) khác 2.
Đồ thị hàm số là tập hợp các điểm có tọa độ \(\left( { - 2;2} \right);\left( { - 1;1} \right);\left( {0;0} \right);\left( {1; - 1} \right);\left( {2; - 2} \right)\) được vẽ trên mặt phẳng tọa độ như hình dưới đây:
a) Tung độ của điểm M mang dấu dương.
Tung độ của điểm N mang dấu dương.
b) Góc tạo bởi hai tia Ax và AM là góc MAO
c) Góc tạo bởi 2 tia Bx và BN là góc NBO
a) Ta có $f(-4)=\frac{4}{-4}=-1$; $f(8)=\frac{4}{8}=\frac{1}{2}$.
b)
x | -2 | -1 | 2 | 3 | $\frac{1}{2}$ |
y = f(x) | -2 | -4 | 2 | $\frac{4}{3}$ | 8 |
a) Dùng trong công cụ để kiểm tra DE, ta thấy độ dài đoạn thẳng DE bằng 4 cm.
b) Lưu hình vẽ ở HĐ3 thành tệp hth.png.Vào Hồ sơ → Chọn Xuất bản → Chọn PNG image (.png).
Trên màn hình hiện lên cửa sổ như sau:Ta đổi tên tệp thành hbh (như hình vẽ), sau đó chọn xuất bản.
c) Vẽ hình thang cân ADEC có AD // EC, AD = 6 cm, CE = 4 cm, AC = DE = 3 cm theo các bước sau:
Bước 1. Vẽ đoạn thẳng AB và có độ dài bằng AD – EC = 2 cm tương tự như Bước 1 của HĐ1.
Bước 2. Vẽ tam giác ABC có BC = 3 cm (độ dài của DE), AC = 3 cm.
Chọn công cụ → Chọn → Nháy chuột vào điểm A, nhập bán kính bằng 3.
Chọn công cụ → Chọn → Nháy chuột vào điểm B, nhập bán kính bằng 3.
Chọn công cụ → Chọn → Lần lượt nháy chuột vào hai đường tròn vừa vẽ, ta được 2 giao điểm, chọn 1 điểm là điểm C.
Chọn công cụ → Chọn → Chọn điểm A → Chọn điểm C.
Chọn công cụ → Chọn → Chọn điểm B → Chọn điểm C.
Bước 3. Vẽ điểm D nằm trên tia AB sao cho AD = 6 cm.Chọn công cụ → Chọn → Nháy chuột vào điểm A, nhập bán kính bằng 6.
Chọn công cụ → Chọn → Nháy chuột lần lượt vào các điểm A, B.
Chọn công cụ → Chọn → Lần lượt nháy chuột vào tia AB và đường tròn vừa vẽ, ta được điểm D.
Bước 4. Vẽ điểm E sao cho DE // BC và CE // AB.
Chọn công cụ → Chọn → Nháy chuột vào điểm C → Nháy chuột vào đoạn thẳng AB.
Chọn công cụ → Chọn → Nháy chuột vào điểm D → Nháy chuột vào đoạn thẳng CB.
Chọn công cụ → Chọn → Lần lượt nháy chuột vào đường thẳng vừa vẽ.
Ẩn các đường tròn, các đường thẳng, đoạn thẳng AB, BC và điểm B. Chọn công cụ để nối A với D, D với E, E với C và thu được hình thang cân ADEC thỏa mãn yêu cầu đề bài.
b)
- Ở hình 2a là đồ thị của 3 hàm số \(y = 0,5x + 2;y = x + 2;y = 2x + 2\).
Ta có: \({a_1} = 0,5;{a_2} = 1;{a_3} = 2\) nên \({a_1} < {a_2} < {a_3}\).
Ta có: \({\alpha _1} < {\alpha _2}\) (góc ngoài của tam giác luôn lớn hơn góc trong không kề với nó).
\({\alpha _2} < {\alpha _3}\) (góc ngoài của tam giác luôn lớn hơn góc trong không kề với nó).
Do đó, \({\alpha _1} < {\alpha _2} < {\alpha _3}\).
- Ở hình 2b là đồ thị của 3 hàm số \(y = - 2x + 2;y = - x + 2;y = - 0,5x + 2\).
Ta có: \({a_1} = - 2;{a_2} = - 1;{a_3} = - 0,5\) nên \({a_1} < {a_2} < {a_3}\).
Ta có: \({\beta _1} < {\beta _2}\) (góc ngoài của tam giác luôn lớn hơn góc trong không kề với nó).
\({\beta _2} < {\beta _3}\) (góc ngoài của tam giác luôn lớn hơn góc trong không kề với nó).
Do đó, \({\beta _1} < {\beta _2} < {\beta _3}\).